Skip to main content

Monoclonal Antibodies for Cancer Immunotherapy

  • Chapter
  • First Online:
Cancer Immunology

Abstract

In recent years, monoclonal antibodies (mAbs), as potent antitumor tools, have gained increasing importance in the clinic. The use of antibody engineering methods has made it possible for investigators to develop antibody structures with improved antitumor effects. The development of efficacious therapeutic mAbs entails gaining in-depth knowledge about factors including antibody structure and function, the properties of an ideal tumor antigen, the advantages of employing combinational therapies, and the limitations of antibody-based modalities. This chapter concentrates on mAbs as versatile platforms for cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas AK, Lichtman AHH, Pillai S. Cellular and molecular immunology: with STUDENT CONSULT Online Access. Philadelphia, PA: Saunders; 2011.

    Google Scholar 

  2. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–87.

    CAS  PubMed  Google Scholar 

  3. Chari RV. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res. 2008;41(1):98–107.

    CAS  PubMed  Google Scholar 

  4. Brandlein S, Pohle T, Ruoff N, Wozniak E, Muller-Hermelink HK, Vollmers HP. Natural IgM antibodies and immunosurveillance mechanisms against epithelial cancer cells in humans. Cancer Res. 2003;63(22):7995–8005.

    PubMed  Google Scholar 

  5. Vollmers HP, Brandlein S. Nature’s best weapons to fight cancer. Revival of human monoclonal IgM antibodies. Hum Antibodies. 2002;11(4):131–42.

    CAS  PubMed  Google Scholar 

  6. Brandlein S, Vollmers HP. Natural IgM antibodies, the ignored weapons in tumour immunity. Histol Histopathol. 2004;19(3):897–905.

    CAS  PubMed  Google Scholar 

  7. Hensel F, Hermann R, Schubert C, Abe N, Schmidt K, Franke A, et al. Characterization of glycosylphosphatidylinositol-linked molecule CD55/decay-accelerating factor as the receptor for antibody SC-1-induced apoptosis. Cancer Res. 1999;59(20):5299–306.

    CAS  PubMed  Google Scholar 

  8. Hensel F, Brandlein S, Eck M, Schmidt K, Krenn V, Kloetzer A, et al. A novel proliferation-associated variant of CFR-1 defined by a human monoclonal antibody. Lab Invest. 2001;81(8):1097–108.

    CAS  PubMed  Google Scholar 

  9. Hakomori S. Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res. 1996;56(23):5309–18.

    CAS  PubMed  Google Scholar 

  10. Hakomori S. Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines. Adv Exp Med Biol. 2001;491:369–402.

    CAS  PubMed  Google Scholar 

  11. Hendershot LM. The ER, function BiP is a master regulator of ER function. Mt Sinai J Med. 2004;71(5):289–97.

    PubMed  Google Scholar 

  12. Macario AJ. Conway de Macario E. Sick chaperones, cellular stress, and disease. N Engl J Med. 2005;353(14):1489–501.

    CAS  PubMed  Google Scholar 

  13. Zhai L, Kita K, Wano C, Wu Y, Sugaya S, Suzuki N. Decreased cell survival and DNA repair capacity after UVC irradiation in association with down-regulation of GRP78/BiP in human RSa cells. Exp Cell Res. 2005;305(2):244–52.

    CAS  PubMed  Google Scholar 

  14. Li J, Lee AS. Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med. 2006;6(1):45–54.

    CAS  PubMed  Google Scholar 

  15. Song MS, Park YK, Lee JH, Park K. Induction of glucose-regulated protein 78 by chronic hypoxia in human gastric tumor cells through a protein kinase C-epsilon/ERK/AP-1 signaling cascade. Cancer Res. 2001;61(22):8322–30.

    CAS  PubMed  Google Scholar 

  16. Uramoto H, Sugio K, Oyama T, Nakata S, Ono K, Yoshimastu T, et al. Expression of endoplasmic reticulum molecular chaperone Grp78 in human lung cancer and its clinical significance. Lung Cancer. 2005;49(1):55–62.

    PubMed  Google Scholar 

  17. Fernandez PM, Tabbara SO, Jacobs LK, Manning FC, Tsangaris TN, Schwartz AM, et al. Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat. 2000;59(1):15–26.

    CAS  PubMed  Google Scholar 

  18. Pohle T, Brandlein S, Ruoff N, Muller-Hermelink HK, Vollmers HP. Lipoptosis: tumor-specific cell death by antibody-induced intracellular lipid accumulation. Cancer Res. 2004;64(11):3900–6.

    CAS  PubMed  Google Scholar 

  19. Brandlein S, Rauschert N, Rasche L, Dreykluft A, Hensel F, Conzelmann E, et al. The human IgM antibody SAM-6 induces tumor-specific apoptosis with oxidized low-density lipoprotein. Mol Cancer Therapeut. 2007;6(1):326–33.

    Google Scholar 

  20. Vollmers HP, Brandlein S. Natural antibodies and cancer. New Biotechnol. 2009;25(5):294–8.

    CAS  Google Scholar 

  21. Davis LS, Patel SS, Atkinson JP, Lipsky PE. Decay-accelerating factor functions as a signal transducing molecule for human T cells. J Immunol. 1988;141(7):2246–52.

    CAS  PubMed  Google Scholar 

  22. Kuraya M, Fujita T. Signal transduction via a protein associated with a glycosylphosphatidylinositol-anchored protein, decay-accelerating factor (DAF/CD55). Int Immunol. 1998;10(4):473–80.

    CAS  PubMed  Google Scholar 

  23. Hensel F, Hermann R, Brandlein S, Krenn V, Schmausser B, Geis S, et al. Regulation of the new coexpressed CD55 (decay-accelerating factor) receptor on stomach carcinoma cells involved in antibody SC-1-induced apoptosis. Lab Invest. 2001;81(11):1553–63.

    CAS  PubMed  Google Scholar 

  24. Vollmers HP, O’Connor R, Muller J, Kirchner T, Muller-Hermelink HK. SC-1, a functional human monoclonal antibody against autologous stomach carcinoma cells. Cancer Res. 1989;49(9):2471–6.

    CAS  PubMed  Google Scholar 

  25. Mikesch JH, Schier K, Roetger A, Simon R, Buerger H, Brandt B. The expression and action of decay-accelerating factor (CD55) in human malignancies and cancer therapy. Cell Oncol. 2006;28(5–6):223–32.

    CAS  PubMed  Google Scholar 

  26. Vollmers HP, Zimmermann U, Krenn V, Timmermann W, Illert B, Hensel F, et al. Adjuvant therapy for gastric adenocarcinoma with the apoptosis-inducing human monoclonal antibody SC-1: first clinical and histopathological results. Oncol Rep. 1998;5(3):549–52.

    CAS  PubMed  Google Scholar 

  27. Illert B, Otto C, Vollmers HP, Hensel F, Thiede A, Timmermann W. Human antibody SC-1 reduces disseminated tumor cells in nude mice with human gastric cancer. Oncol Rep. 2005;13(4):765–70.

    CAS  PubMed  Google Scholar 

  28. Vollmers HP, Hensel F, Hermann R, Dammrich J, Wozniak E, Gessner P, et al. Tumor-specific apoptosis induced by the human monoclonal antibody SC-1: a new therapeutical approach for stomach cancer. Oncol Rep. 1998;5(1):35–40.

    CAS  PubMed  Google Scholar 

  29. Vollmers HP, Dammrich J, Hensel F, Ribbert H, Meyer-Bahlburg A, Ufken-Gaul T, et al. Differential expression of apoptosis receptors on diffuse and intestinal type stomach carcinoma. Cancer. 1997;79(3):433–40.

    CAS  PubMed  Google Scholar 

  30. Brandlein S, Beyer I, Eck M, Bernhardt W, Hensel F, Muller-Hermelink HK, et al. Cysteine-rich fibroblast growth factor receptor 1, a new marker for precancerous epithelial lesions defined by the human monoclonal antibody PAM-1. Cancer Res. 2003;63(9):2052–61.

    PubMed  Google Scholar 

  31. Brandlein S, Eck M, Strobel P, Wozniak E, Muller-Hermelink HK, Hensel F, et al. PAM-1, a natural human IgM antibody as new tool for detection of breast and prostate precursors. Hum Antibodies. 2004;13(4):97–104.

    PubMed  Google Scholar 

  32. Lambiase A, Micera A, Sgrulletta R, Bonini S, Bonini S. Nerve growth factor and the immune system: old and new concepts in the cross-talk between immune and resident cells during pathophysiological conditions. Curr Opin Allergy Clin Immunol. 2004;4(5):425–30.

    CAS  PubMed  Google Scholar 

  33. Tometten M, Blois S, Arck PC. Nerve growth factor in reproductive biology: link between the immune, endocrine and nervous system? Chem Immunol Allergy. 2005;89:135–48.

    CAS  PubMed  Google Scholar 

  34. Kruttgen A, Schneider I, Weis J. The dark side of the NGF family: neurotrophins in neoplasias. Brain Pathol. 2006;16(4):304–10.

    PubMed  Google Scholar 

  35. Papatsoris AG, Liolitsa D, Deliveliotis C. Manipulation of the nerve growth factor network in prostate cancer. Exp Opin Invest Drugs. 2007;16(3):303–9.

    CAS  Google Scholar 

  36. Miknyoczki SJ, Wan W, Chang H, Dobrzanski P, Ruggeri BA, Dionne CA, et al. The neurotrophin-trk receptor axes are critical for the growth and progression of human prostatic carcinoma and pancreatic ductal adenocarcinoma xenografts in nude mice. Clin Cancer Res. 2002;8(6):1924–31.

    CAS  PubMed  Google Scholar 

  37. Schachter J, Katz U, Mahrer A, Barak D, David LZ, Nusbacher J, et al. Efficacy and safety of intravenous immunoglobulin in patients with metastatic melanoma. Ann N Y Acad Sci. 2007;1110:305–14.

    CAS  PubMed  Google Scholar 

  38. Fishman P, Bar-Yehuda S, Shoenfeld Y. IVIg to prevent tumor metastases (Review). Int J Oncol. 2002;21(4):875–80.

    CAS  PubMed  Google Scholar 

  39. Halvorson KG, Kubota K, Sevcik MA, Lindsay TH, Sotillo JE, Ghilardi JR, et al. A blocking antibody to nerve growth factor attenuates skeletal pain induced by prostate tumor cells growing in bone. Cancer Res. 2005;65(20):9426–35.

    CAS  PubMed  Google Scholar 

  40. Warrington RJ, Lewis KE. Natural antibodies against nerve growth factor inhibit in vitro prostate cancer cell metastasis. Cancer Immunol Immunother. 2011;60(2):187–95.

    CAS  PubMed  Google Scholar 

  41. Thurber GM, Zajic SC, Wittrup KD. Theoretic criteria for antibody penetration into solid tumors and micrometastases. Ann N Y Acad Sci. 2007;48(6):995–9.

    CAS  Google Scholar 

  42. Daneshmanesh AH, Mikaelsson E, Jeddi-Tehrani M, Bayat AA, Ghods R, Ostadkarampour M, et al. Ror1, a cell surface receptor tyrosine kinase is expressed in chronic lymphocytic leukemia and may serve as a putative target for therapy. Int J Cancer. 2008;123(5):1190–5.

    CAS  PubMed  Google Scholar 

  43. Ademuyiwa FO, Bshara W, Attwood K, Morrison C, Edge SB, Karpf AR, et al. NY-ESO-1 cancer testis antigen demonstrates high immunogenicity in triple negative breast cancer. PLoS One. 2012;7(6):e38783.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Pillay V, Gan HK, Scott AM. Antibodies in oncology. New Biotechnol. 2011;28(5):518–29.

    CAS  Google Scholar 

  45. Sznol M, Davis T. Tumor antigens as targets for anti cancer drug development. In: Baguley B, Kerr D, editors. Anticancer drug development. 1st ed. United State of America: Academic Press; 2001. p. 157–70.

    Google Scholar 

  46. Lee W, Yue P, Zhang Z. Analytical methods for inferring functional effects of single base pair substitutions in human cancers. Hum Gene. 2009;126(4):481–98.

    Google Scholar 

  47. Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell. 1998;92(6):725–34.

    CAS  PubMed  Google Scholar 

  48. Vogt N, Lefevre SH, Apiou F, Dutrillaux AM, Cor A, Leuraud P, et al. Molecular structure of double-minute chromosomes bearing amplified copies of the epidermal growth factor receptor gene in gliomas. Proc Natl Acad Sci U S A. 2004;101(31):11368–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science. 1990;247(4946):1079–82.

    CAS  PubMed  Google Scholar 

  50. Pinkel D, Albertson DG. Array comparative genomic hybridization and its applications in cancer. Nat Genet. 2005;37(Suppl):S11–7.

    CAS  PubMed  Google Scholar 

  51. Sattler HP, Rohde V, Bonkhoff H, Zwergel T, Wullich B. Comparative genomic hybridization reveals DNA copy number gains to frequently occur in human prostate cancer. Prostate. 1999;39(2):79–86.

    CAS  PubMed  Google Scholar 

  52. Adeyinka A, Kytola S, Mertens F, Pandis N, Larsson C. Spectral karyotyping and chromosome banding studies of primary breast carcinomas and their lymph node metastases. Int J Mol Med. 2000;5(3):235–40.

    CAS  PubMed  Google Scholar 

  53. Wong N, Lai P, Pang E, Leung TW, Lau JW, Johnson PJ. A comprehensive karyotypic study on human hepatocellular carcinoma by spectral karyotyping. Hepatology. 2000;32(5):1060–8.

    CAS  PubMed  Google Scholar 

  54. Veldman T, Vignon C, Schrock E, Rowley JD, Ried T. Hidden chromosome abnormalities in haematological malignancies detected by multicolour spectral karyotyping. Nat Genet. 1997;15(4):406–10.

    CAS  PubMed  Google Scholar 

  55. Carter P, Fendly BM, Lewis GD, Sliwkowski MX. Development of herceptin. Breast Dis. 2000;11:103–11.

    CAS  PubMed  Google Scholar 

  56. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467–70.

    CAS  PubMed  Google Scholar 

  57. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol. 1996;14(13):1675–80.

    CAS  PubMed  Google Scholar 

  58. Greiner J, Schmitt M, Li L, Giannopoulos K, Bosch K, Schmitt A, et al. Expression of tumor-associated antigens in acute myeloid leukemia: implications for specific immunotherapeutic approaches. Blood. 2006;108(13):4109–17.

    CAS  PubMed  Google Scholar 

  59. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science. 1995;270(5235):484–7.

    CAS  PubMed  Google Scholar 

  60. Wang SM. Understanding SAGE data. Trends Genet. 2007;23(1):42–50.

    PubMed  Google Scholar 

  61. Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, et al. Gene expression profiles in normal and cancer cells. Science. 1997;276(5316):1268–72.

    CAS  PubMed  Google Scholar 

  62. Hermeking H. Serial analysis of gene expression and cancer. Curr Opin Oncol. 2003;15(1):44–9.

    CAS  PubMed  Google Scholar 

  63. Datson NA, van der Perk-de JJ, van den Berg MP, de Kloet ER, Vreugdenhil E. MicroSAGE: a modified procedure for serial analysis of gene expression in limited amounts of tissue. Nucleic Acids Res. 1999;27(5):1300–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Lichtinghagen R, Musholt PB, Lein M, Romer A, Rudolph B, Kristiansen G, et al. Different mRNA and protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinases 1 in benign and malignant prostate tissue. Eur Urol. 2002;42(4):398–406.

    CAS  PubMed  Google Scholar 

  65. Basu A, Rojas H, Banerjee H, Cabrera IB, Perez KY, De Leon M, et al. Expression of the stress response oncoprotein LEDGF/p75 in human cancer: a study of 21 tumor types. PLoS One. 2012;7(1):e30132.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Chen G, Gharib TG, Huang CC, Taylor JM, Misek DE, Kardia SL, et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics. 2002;1(4):304–13.

    CAS  PubMed  Google Scholar 

  67. Kalinichenko SV, Kopantzev EP, Korobko EV, Palgova IV, Zavalishina LE, Bateva MV, et al. Pdcd4 protein and mRNA level alterations do not correlate in human lung tumors. Lung Cancer. 2008;62(2):173–80.

    PubMed  Google Scholar 

  68. O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250(10):4007–21.

    PubMed Central  PubMed  Google Scholar 

  69. Celis JE, Ostergaard M, Rasmussen HH, Gromov P, Gromova I, Varmark H, et al. A comprehensive protein resource for the study of bladder cancer. Electrophoresis. 1999;20(2):300–9.

    CAS  PubMed  Google Scholar 

  70. Ostergaard M, Rasmussen HH, Nielsen HV, Vorum H, Orntoft TF, Wolf H, et al. Proteome profiling of bladder squamous cell carcinomas: identification of markers that define their degree of differentiation. Cancer Res. 1997;57(18):4111–7.

    CAS  PubMed  Google Scholar 

  71. Bernard K, Litman E, Fitzpatrick JL, Shellman YG, Argast G, Polvinen K, et al. Functional proteomic analysis of melanoma progression. Cancer Res. 2003;63(20):6716–25.

    CAS  PubMed  Google Scholar 

  72. Chen G, Gharib TG, Huang CC, Thomas DG, Shedden KA, Taylor JM, et al. Proteomic analysis of lung adenocarcinoma: identification of a highly expressed set of proteins in tumors. Clin Cancer Res. 2002;8(7):2298–305.

    CAS  PubMed  Google Scholar 

  73. Le Naour F, Misek DE, Krause MC, Deneux L, Giordano TJ, Scholl S, et al. Proteomics-based identification of RS/DJ-1 as a novel circulating tumor antigen in breast cancer. Clin Cancer Res. 2001;7(11):3328–35.

    PubMed  Google Scholar 

  74. Hanash SM, Strahler JR, Kuick R, Chu EH, Nichols D. Identification of a polypeptide associated with the malignant phenotype in acute leukemia. J Biol Chem. 1988;263(26):12813–5.

    CAS  PubMed  Google Scholar 

  75. Ahmed N, Oliva KT, Barker G, Hoffmann P, Reeve S, Smith IA, et al. Proteomic tracking of serum protein isoforms as screening biomarkers of ovarian cancer. Proteomics. 2005;5(17):4625–36.

    CAS  PubMed  Google Scholar 

  76. Ricolleau G, Charbonnel C, Lode L, Loussouarn D, Joalland MP, Bogumil R, et al. Surface-enhanced laser desorption/ionization time of flight mass spectrometry protein profiling identifies ubiquitin and ferritin light chain as prognostic biomarkers in node-negative breast cancer tumors. Proteomics. 2006;6(6):1963–75.

    CAS  PubMed  Google Scholar 

  77. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127(3):635–48.

    CAS  PubMed  Google Scholar 

  78. Pawlik TM, Hawke DH, Liu Y, Krishnamurthy S, Fritsche H, Hunt KK, et al. Proteomic analysis of nipple aspirate fluid from women with early-stage breast cancer using isotope-coded affinity tags and tandem mass spectrometry reveals differential expression of vitamin D binding protein. BMC Cancer. 2006;6:68.

    PubMed Central  PubMed  Google Scholar 

  79. Rehman I, Evans CA, Glen A, Cross SS, Eaton CL, Down J, et al. iTRAQ identification of candidate serum biomarkers associated with metastatic progression of human prostate cancer. PLoS One. 2012;7(2):e30885.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Spurrier B, Ramalingam S, Nishizuka S. Reverse-phase protein lysate microarrays for cell signaling analysis. Nat Protoc. 2008;3(11):1796–808.

    PubMed  Google Scholar 

  81. Hartmann M, Roeraade J, Stoll D, Templin MF, Joos TO. Protein microarrays for diagnostic assays. Analyt Bioanal Chem. 2009;393(5):1407–16.

    CAS  Google Scholar 

  82. Chen S, LaRoche T, Hamelinck D, Bergsma D, Brenner D, Simeone D, et al. Multiplexed analysis of glycan variation on native proteins captured by antibody microarrays. Nat Methods. 2007;4(5):437–44.

    CAS  PubMed  Google Scholar 

  83. Sanchez-Carbayo M, Socci ND, Lozano JJ, Haab BB, Cordon-Cardo C. Profiling bladder cancer using targeted antibody arrays. Am J Pathol. 2006;168(1):93–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci U S A. 1995;92(25):11810–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Jager D. Potential target antigens for immunotherapy identified by serological expression cloning (SEREX). Methods Mol Biol. 2007;360:319–26.

    PubMed  Google Scholar 

  86. Imai K, Hirata S, Irie A, Senju S, Ikuta Y, Yokomine K, et al. Identification of HLA-A2-restricted CTL epitopes of a novel tumour-associated antigen, KIF20A, overexpressed in pancreatic cancer. Br J Cancer. 2011;104(2):300–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Edelman MJ, Hodgson L, Rosenblatt PY, Christenson RH, Vokes EE, Wang X, et al. CYFRA 21-1 as a prognostic and predictive marker in advanced non-small-cell lung cancer in a prospective trial: CALGB 150304. J Thoracic Oncol. 2012;7(4):649–54.

    CAS  Google Scholar 

  88. Lee SY, Obata Y, Yoshida M, Stockert E, Williamson B, Jungbluth AA, et al. Immunomic analysis of human sarcoma. Proc Natl Acad Sci U S A. 2003;100(5):2651–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Krackhardt AM, Witzens M, Harig S, Hodi FS, Zauls AJ, Chessia M, et al. Identification of tumor-associated antigens in chronic lymphocytic leukemia by SEREX. Blood. 2002;100(6):2123–31.

    CAS  PubMed  Google Scholar 

  90. Tschiedel S, Gentilini C, Lange T, Wolfel C, Wolfel T, Lennerz V, et al. Identification of NM23-H2 as a tumour-associated antigen in chronic myeloid leukaemia. Leukemia. 2008;22(8):1542–50.

    CAS  PubMed  Google Scholar 

  91. Klade CS, Voss T, Krystek E, Ahorn H, Zatloukal K, Pummer K, et al. Identification of tumor antigens in renal cell carcinoma by serological proteome analysis. Proteomics. 2001;1(7):890–8.

    CAS  PubMed  Google Scholar 

  92. Suzuki A, Iizuka A, Komiyama M, Takikawa M, Kume A, Tai S, et al. Identification of melanoma antigens using a Serological Proteome Approach (SERPA). Cancer Genomics Proteomics. 2010;7(1):17–23.

    CAS  PubMed  Google Scholar 

  93. Hamrita B, Chahed K, Kabbage M, Guillier CL, Trimeche M, Chaieb A, et al. Identification of tumor antigens that elicit a humoral immune response in breast cancer patients’ sera by serological proteome analysis (SERPA). Clin Chim Acta. 2008;393(2):95–102.

    CAS  PubMed  Google Scholar 

  94. He Y, Wu Y, Mou Z, Li W, Zou L, Fu T, et al. Proteomics-based identification of HSP60 as a tumor-associated antigen in colorectal cancer. Proteomics Clin Appl. 2007;1(3):336–42.

    CAS  PubMed  Google Scholar 

  95. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol. 2005;23(9):1147–57.

    CAS  PubMed  Google Scholar 

  96. Chen JS, Lan K, Hung MC. Strategies to target HER2/neu overexpression for cancer therapy. Drug Resist Up. 2003;6(3):129–36.

    CAS  Google Scholar 

  97. Hudis CA. Trastuzumab–mechanism of action and use in clinical practice. N Engl J Med. 2007;357(1):39–51.

    CAS  PubMed  Google Scholar 

  98. Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 2004;5(4):317–28.

    CAS  PubMed  Google Scholar 

  99. Scheuer W, Friess T, Burtscher H, Bossenmaier B, Endl J, Hasmann M. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res. 2009;69(24):9330–6.

    CAS  PubMed  Google Scholar 

  100. Sunada H, Magun BE, Mendelsohn J, MacLeod CL. Monoclonal antibody against epidermal growth factor receptor is internalized without stimulating receptor phosphorylation. Proc Natl Acad Sci U S A. 1986;83(11):3825–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Schoeberl B, Pace EA, Fitzgerald JB, Harms BD, Xu L, Nie L, et al. Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci Signal. 2009;2(77):ra31.

    PubMed  Google Scholar 

  102. Hollmen M, Maatta JA, Bald L, Sliwkowski MX, Elenius K. Suppression of breast cancer cell growth by a monoclonal antibody targeting cleavable ErbB4 isoforms. Oncogene. 2009;28(10):1309–19.

    CAS  PubMed  Google Scholar 

  103. Daneshmanesh AH, Porwit A, Hojjat-Farsangi M, Jeddi-Tehrani M, Tamm KP, Grander D, et al. Orphan receptor tyrosine kinases ROR1 and ROR2 in hematological malignancies. Leuk Lymphoma. 2013;54(4):843–50.

    CAS  PubMed  Google Scholar 

  104. Yamaguchi T, Yanagisawa K, Sugiyama R, Hosono Y, Shimada Y, Arima C, et al. NKX2-1/TITF1/TTF-1-Induced ROR1 is required to sustain EGFR survival signaling in lung adenocarcinoma. Cancer Cell. 2012;21(3):348–61.

    CAS  PubMed  Google Scholar 

  105. Zhang S, Chen L, Cui B, Chuang HY, Yu J, Wang-Rodriguez J, et al. ROR1 is expressed in human breast cancer and associated with enhanced tumor-cell growth. PLoS One. 2012;7(3):e31127.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Daneshmanesh AH, Hojjat-Farsangi M, Khan AS, Jeddi-Tehrani M, Akhondi MM, Bayat AA, et al. Monoclonal antibodies against ROR1 induce apoptosis of chronic lymphocytic leukemia (CLL) cells. Leukemia. 2012;26(6):1348–55.

    CAS  PubMed  Google Scholar 

  107. Gentile A, Lazzari L, Benvenuti S, Trusolino L, Comoglio PM. Ror1 is a pseudokinase that is crucial for Met-driven tumorigenesis. Cancer Res. 2011;71(8):3132–41.

    CAS  PubMed  Google Scholar 

  108. Choudhury A, Derkow K, Daneshmanesh AH, Mikaelsson E, Kiaii S, Kokhaei P, et al. Silencing of ROR1 and FMOD with siRNA results in apoptosis of CLL cells. Br J Haematol. 2010;151(4):327–35.

    CAS  PubMed  Google Scholar 

  109. Hojjat-Farsangi M, Ghaemimanesh F, Daneshmanesh AH, Bayat AA, Mahmoudian J, Jeddi-Tehrani M, et al. Inhibition of the receptor tyrosine kinase ROR1 by anti-ROR1 monoclonal antibodies and siRNA induced apoptosis of melanoma cells. PLoS One. 2013;8(4):e61167.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Nimmerjahn F, Ravetch JV. Fcgamma receptors: old friends and new family members. Immunity. 2006;24(1):19–28.

    CAS  PubMed  Google Scholar 

  111. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000;6(4):443–6.

    CAS  PubMed  Google Scholar 

  112. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99(3):754–8.

    CAS  PubMed  Google Scholar 

  113. Horton HM, Bernett MJ, Pong E, Peipp M, Karki S, Chu SY, et al. Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia. Cancer Res. 2008;68(19):8049–57.

    CAS  PubMed  Google Scholar 

  114. Di Gaetano N, Cittera E, Nota R, Vecchi A, Grieco V, Scanziani E, et al. Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol. 2003;171(3):1581–7.

    PubMed  Google Scholar 

  115. Cragg MS, Glennie MJ. Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood. 2004;103(7):2738–43.

    CAS  PubMed  Google Scholar 

  116. Berard F, Blanco P, Davoust J, Neidhart-Berard EM, Nouri-Shirazi M, Taquet N, et al. Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J Exp Med. 2000;192(11):1535–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Hoffmann TK, Meidenbauer N, Dworacki G, Kanaya H, Whiteside TL. Generation of tumor-specific T-lymphocytes by cross-priming with human dendritic cells ingesting apoptotic tumor cells. Cancer Res. 2000;60(13):3542–9.

    CAS  PubMed  Google Scholar 

  118. Dhodapkar KM, Krasovsky J, Williamson B, Dhodapkar MV. Antitumor monoclonal antibodies enhance cross-presentation ofcCellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J Exp Med. 2002;195(1):125–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Dhodapkar KM, Kaufman JL, Ehlers M, Banerjee DK, Bonvini E, Koenig S, et al. Selective blockade of inhibitory Fcgamma receptor enables human dendritic cell maturation with IL-12p70 production and immunity to antibody-coated tumor cells. Proc Natl Acad Sci U S A. 2005;102(8):2910–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol. 2010;10(5):317–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Ann Rev Immunol. 2007;25:267–96.

    CAS  Google Scholar 

  122. Fong L, Small EJ. Anti-cytotoxic T-lymphocyte antigen-4 antibody: the first in an emerging class of immunomodulatory antibodies for cancer treatment. J Clin Oncol. 2008;26(32):5275–83.

    CAS  PubMed  Google Scholar 

  123. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med. 2009;206(8):1717–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Weber J. Ipilimumab: controversies in its development, utility and autoimmune adverse events. Cancer Immunol Immunother. 2009;58(5):823–30.

    CAS  PubMed  Google Scholar 

  126. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167–75.

    CAS  PubMed  Google Scholar 

  127. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331(6024):1612–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Kirkwood JM, Tarhini AA, Panelli MC, Moschos SJ, Zarour HM, Butterfield LH, et al. Next generation of immunotherapy for melanoma. J Clin Oncol. 2008;26(20):3445–55.

    CAS  PubMed  Google Scholar 

  129. Deckert PM. Current constructs and targets in clinical development for antibody-based cancer therapy. Curr Drug Targ. 2009;10(2):158–75.

    CAS  Google Scholar 

  130. Scott AM, Wiseman G, Welt S, Adjei A, Lee FT, Hopkins W, et al. A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin Cancer Res. 2003;9(5):1639–47.

    CAS  PubMed  Google Scholar 

  131. Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8(8):579–91.

    CAS  PubMed  Google Scholar 

  132. Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011;17(3):320–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Krupitskaya Y, Wakelee HA. Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Curr Opin Invest Drugs. 2009;10(6):597–605.

    CAS  Google Scholar 

  134. Wu Y, Zhong Z, Huber J, Bassi R, Finnerty B, Corcoran E, et al. Anti-vascular endothelial growth factor receptor-1 antagonist antibody as a therapeutic agent for cancer. Clin Cancer Res. 2006;12(21):6573–84.

    CAS  PubMed  Google Scholar 

  135. Hirschi KK, Rohovsky SA, D’Amore PA. PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol. 1998;141(3):805–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Shen J, Vil MD, Prewett M, Damoci C, Zhang H, Li H, et al. Development of a fully human anti-PDGFRbeta antibody that suppresses growth of human tumor xenografts and enhances antitumor activity of an anti-VEGFR2 antibody. Neoplasia. 2009;11(6):594–604.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Kakarla S, Song XT, Gottschalk S. Cancer-associated fibroblasts as targets for immunotherapy. Immunotherapy. 2012;4(11):1129–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.

    CAS  PubMed  Google Scholar 

  139. Hadavi R, Zarnani AH, Ahmadvand N, Mahmoudi AR, Bayat AA, Mahmoudian J, et al. Production of monoclonal antibody against human nestin. Avicenna J Med Biotechnol. 2010;2(2):69–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Shojaeian S, Allameh A, Zarnani AH, Chamankhah M, Ghods R, Bayat AA, et al. Production and characterization of monoclonal antibodies against the extracellular domain of CA 125. Immunol Invest. 2010;39(2):114–31.

    CAS  PubMed  Google Scholar 

  141. Kazemi T, Tahmasebi F, Bayat AA, Mohajer N, Khoshnoodi J, Jeddi-Tehrani M, et al. Characterization of novel murine monoclonal antibodies directed against the extracellular domain of human HER2 tyrosine kinase receptor. Hybridoma. 2011;30(4):347–53.

    CAS  PubMed  Google Scholar 

  142. Sarial S, Asadi F, Jeddi-Tehrani M, Hadavi R, Bayat AA, Mahmoudian J, et al. A high affinity monoclonal antibody recognizing the light chain of human coagulating factor VII. Hybridoma. 2012;31(6):443–8.

    CAS  PubMed  Google Scholar 

  143. Stern M, Herrmann R. Overview of monoclonal antibodies in cancer therapy: present and promise. Crit Rev Oncol Hematol. 2005;54(1):11–29.

    CAS  PubMed  Google Scholar 

  144. Iannello A, Ahmad A. Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metast Rev. 2005;24(4):487–99.

    CAS  Google Scholar 

  145. Smith SL. Ten years of Orthoclone OKT3 (muromonab-CD3): a review. J Transpl Coord. 1996;6(3):109–19; quiz 20–1.

    CAS  PubMed  Google Scholar 

  146. McCafferty J, Griffiths AD, Winter G, Chiswell DJ. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990;348(6301):552–4.

    CAS  PubMed  Google Scholar 

  147. Hudson PJ, Souriau C. Engineered antibodies. Nat Med. 2003;9(1):129–34.

    CAS  PubMed  Google Scholar 

  148. Lonberg N. Human antibodies from transgenic animals. Nat Biotechnol. 2005;23(9):1117–25.

    CAS  PubMed  Google Scholar 

  149. Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature. 1986;321(6069):522–5.

    CAS  PubMed  Google Scholar 

  150. Morrison SL, Johnson MJ, Herzenberg LA, Oi VT. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A. 1984;81(21):6851–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 2009;157(2):220–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ, Air G, et al. Conformations of immunoglobulin hypervariable regions. Nature. 1989;342(6252):877–83.

    CAS  PubMed  Google Scholar 

  153. Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov. 2010;9(10):767–74.

    CAS  PubMed  Google Scholar 

  154. Chirino AJ, Ary ML, Marshall SA. Minimizing the immunogenicity of protein therapeutics. Drug Discov Today. 2004;9(2):82–90.

    CAS  PubMed  Google Scholar 

  155. Hwang WY, Foote J. Immunogenicity of engineered antibodies. Methods. 2005;36(1):3–10.

    CAS  PubMed  Google Scholar 

  156. Jakobovits A. Production of fully human antibodies by transgenic mice. Curr Opin Biotech. 1995;6(5):561–6.

    CAS  PubMed  Google Scholar 

  157. Kim SJ, Park Y, Hong HJ. Antibody engineering for the development of therapeutic antibodies. Mol Cells. 2005;20(1):17–29.

    CAS  PubMed  Google Scholar 

  158. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228(4705):1315–7.

    CAS  PubMed  Google Scholar 

  159. Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NB, Hamid M. scFv antibody: principles and clinical application. Clin Dev Immunol. 2012;2012:980250.

    PubMed Central  PubMed  Google Scholar 

  160. Schirrmann T, Meyer T, Schutte M, Frenzel A, Hust M. Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules. 2011;16(1):412–26.

    CAS  PubMed  Google Scholar 

  161. Thie H, Meyer T, Schirrmann T, Hust M, Dubel S. Phage display derived therapeutic antibodies. Curr Pharm Biotechnol. 2008;9(6):439–46.

    CAS  PubMed  Google Scholar 

  162. Schmidt MM, Wittrup KD. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Therapeut. 2009;8(10):2861–71.

    CAS  Google Scholar 

  163. Jain RK. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res. 1990;50(3 Suppl):814s–9.

    CAS  PubMed  Google Scholar 

  164. Sandstrom K, Haylock AK, Spiegelberg D, Qvarnstrom F, Wester K, Nestor M. A novel CD44v6 targeting antibody fragment with improved tumor-to-blood ratio. Int J Oncol. 2012;40(5):1525–32.

    CAS  PubMed  Google Scholar 

  165. Yokota T, Milenic DE, Whitlow M, Schlom J. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res. 1992;52(12):3402–8.

    CAS  PubMed  Google Scholar 

  166. Wong KJ, Baidoo KE, Nayak TK, Garmestani K, Brechbiel MW, Milenic DE. In Vitro and In Vivo Pre-Clinical Analysis of a F (ab’) (2) Fragment of Panitumumab for Molecular Imaging and Therapy of HER1 Positive Cancers. EJNMMI Res. 2011;1(1):1.

    PubMed Central  PubMed  Google Scholar 

  167. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, et al. Single-chain antigen-binding proteins. Science. 1988;242(4877):423–6.

    CAS  PubMed  Google Scholar 

  168. Cochet O, Gruel N, Fridman WH, Teillaud JL. Ras and p53 intracellular targeting with recombinant single-chain Fv (scFv) fragments: a novel approach for cancer therapy? Cancer Detect Prev. 1999;23(6):506–10.

    CAS  PubMed  Google Scholar 

  169. Nellis DF, Giardina SL, Janini GM, Shenoy SR, Marks JD, Tsai R, et al. Preclinical manufacture of anti-HER2 liposome-inserting, scFv-PEG-lipid conjugate. 2. Conjugate micelle identity, purity, stability, and potency analysis. Biotechnol Prog. 2005;21(1):221–32.

    CAS  PubMed  Google Scholar 

  170. Holliger P, Prospero T, Winter G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci U S A. 1993;90(14):6444–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Knowles SM, Wu AM. Advances in immuno-positron emission tomography: antibodies for molecular imaging in oncology. J Clin Oncol. 2012;30(31):3884–92.

    PubMed Central  PubMed  Google Scholar 

  172. Hu S, Shively L, Raubitschek A, Sherman M, Williams LE, Wong JY, et al. Minibody: a novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res. 1996;56(13):3055–61.

    CAS  PubMed  Google Scholar 

  173. Slavin-Chiorini DC, Kashmiri SV, Schlom J, Calvo B, Shu LM, Schott ME, et al. Biological properties of chimeric domain-deleted anticarcinoma immunoglobulins. Cancer Res. 1995;55(23 Suppl):5957s–67.

    CAS  PubMed  Google Scholar 

  174. Sundaresan G, Yazaki PJ, Shively JE, Finn RD, Larson SM, Raubitschek AA, et al. 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med. 2003;44(12):1962–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Kontermann R. Dual targeting strategies with bispecific antibodies. MAbs. 2012;4(2):182–97.

    PubMed Central  PubMed  Google Scholar 

  176. Cotton RG, Milstein C. Letter: fusion of two immunoglobulin-producing myeloma cells. Nature. 1973;244(5410):42–3.

    CAS  PubMed  Google Scholar 

  177. Ridgway JB, Presta LG, Carter P. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 1996;9(7):617–21.

    CAS  PubMed  Google Scholar 

  178. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23(9):1126–36.

    CAS  PubMed  Google Scholar 

  179. Du-Cuny L, Huwyler J, Fischer H, Kansy M. A potentiometric titration method for the crystallization of drug-like organic molecules. Int J Pharmaceut. 2007;342(1–2):161–7.

    CAS  Google Scholar 

  180. Muller D, Kontermann RE. Recombinant bispecific antibodies for cellular cancer immunotherapy. Curr Opin Mol Therapeut. 2007;9(4):319–26.

    Google Scholar 

  181. Reusch U, Sundaram M, Davol PA, Olson SD, Davis JB, Demel K, et al. Anti-CD3 x anti-epidermal growth factor receptor (EGFR) bispecific antibody redirects T-cell cytolytic activity to EGFR-positive cancers in vitro and in an animal model. Clin Cancer Res. 2006;12(1):183–90.

    CAS  PubMed  Google Scholar 

  182. Sen M, Wankowski DM, Garlie NK, Siebenlist RE, Van Epps D, LeFever AV, et al. Use of anti-CD3 x anti-HER2/neu bispecific antibody for redirecting cytotoxicity of activated T cells toward HER2/neu + tumors. J Hematother Stem Cell Res. 2001;10(2):247–60.

    CAS  PubMed  Google Scholar 

  183. Kriangkum J, Xu B, Gervais C, Paquette D, Jacobs FA, Martin L, et al. Development and characterization of a bispecific single-chain antibody directed against T cells and ovarian carcinoma. Hybridoma. 2000;19(1):33–41.

    CAS  PubMed  Google Scholar 

  184. Gall JM, Davol PA, Grabert RC, Deaver M, Lum LG. T cells armed with anti-CD3 x anti-CD20 bispecific antibody enhance killing of CD20+ malignant B cells and bypass complement-mediated rituximab resistance in vitro. Exp Hematol. 2005;33(4):452–9.

    CAS  PubMed  Google Scholar 

  185. Topp MS, Kufer P, Gokbuget N, Goebeler M, Klinger M, Neumann S, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29(18):2493–8.

    CAS  PubMed  Google Scholar 

  186. Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 2008;321(5891):974–7.

    CAS  PubMed  Google Scholar 

  187. Vallera DA, Todhunter DA, Kuroki DW, Shu Y, Sicheneder A, Chen H. A bispecific recombinant immunotoxin, DT2219, targeting human CD19 and CD22 receptors in a mouse xenograft model of B-cell leukemia/lymphoma. Clin Cancer Res. 2005;11(10):3879–88.

    CAS  PubMed  Google Scholar 

  188. Vallera DA, Chen H, Sicheneder AR, Panoskaltsis-Mortari A, Taras EP. Genetic alteration of a bispecific ligand-directed toxin targeting human CD19 and CD22 receptors resulting in improved efficacy against systemic B cell malignancy. Leuk Res. 2009;33(9):1233–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Vallera DA, Oh S, Chen H, Shu Y, Frankel AE. Bioengineering a unique deimmunized bispecific targeted toxin that simultaneously recognizes human CD22 and CD19 receptors in a mouse model of B-cell metastases. Mol Cancer Therapeut. 2010;9(6):1872–83.

    CAS  Google Scholar 

  190. Dosio F, Stella B, Cerioni S, Gastaldi D, Arpicco S. Advances in anticancer antibody-drug conjugates and immunotoxins. Recent Pat Anticancer Drug Discov. 2014;9(1):35–65.

    CAS  PubMed  Google Scholar 

  191. Govindan SV, Goldenberg DM. Designing immunoconjugates for cancer therapy. Exp Opin Biol Ther. 2012;12(7):873–90.

    CAS  Google Scholar 

  192. Flygare JA, Pillow TH, Aristoff P. Antibody-drug conjugates for the treatment of cancer. Chem Biol Drug Des. 2013;81(1):113–21.

    CAS  PubMed  Google Scholar 

  193. Govindan SV, Goldenberg DM. New antibody conjugates in cancer therapy. Sci World J. 2010;10:2070–89.

    CAS  Google Scholar 

  194. Wild R, Dhanabal M, Olson TA, Ramakrishnan S. Inhibition of angiogenesis and tumour growth by VEGF121-toxin conjugate: differential effect on proliferating endothelial cells. Br J Cancer. 2000;83(8):1077–83.

    Google Scholar 

  195. Li D, Achilles-Poon K, Yu SF, Dere R, Go M, Lau J, et al. DCDT2980S, an anti-CD22-Monomethyl Auristatin E antibody-drug conjugate, is a potential treatment for non-Hodgkin Lymphoma. Mol Cancer Ther. 2013;12(7):1255–65.

    Google Scholar 

  196. Lutz RJ, Whiteman KR. Antibody-maytansinoid conjugates for the treatment of myeloma. MAbs. 2009;1(6):548–51.

    PubMed Central  PubMed  Google Scholar 

  197. Ballantyne A, Dhillon S. Trastuzumab emtansine: first global approval. Drugs. 2013;73(7):755–65.

    CAS  PubMed  Google Scholar 

  198. Barginear MF, John V, Budman DR. Trastuzumab-DM1: a clinical update of the novel antibody-drug conjugate for HER2-overexpressing breast cancer. Mol Med. 2012;18:1473–9.

    CAS  PubMed Central  Google Scholar 

  199. Barok M, Tanner M, Koninki K, Isola J. Trastuzumab-DM1 causes tumour growth inhibition by mitotic catastrophe in trastuzumab-resistant breast cancer cells in vivo. Breast Cancer Res. 2011;13(2):R46.

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Gillessen S, Gnad-Vogt US, Gallerani E, Beck J, Sessa C, Omlin A, et al. A phase I dose-escalation study of the immunocytokine EMD 521873 (Selectikine) in patients with advanced solid tumours. Eur J Cancer. 2013;49(1):35–44.

    CAS  PubMed  Google Scholar 

  201. Albertini MR, Hank JA, Gadbaw B, Kostlevy J, Haldeman J, Schalch H, et al. Phase II trial of hu14.18-IL2 for patients with metastatic melanoma. Cancer Immunol Immunother. 2012;61(12):2261–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Ribas A, Kirkwood JM, Atkins MB, Whiteside TL, Gooding W, Kovar A, et al. Phase I/II open-label study of the biologic effects of the interleukin-2 immunocytokine EMD 273063 (hu14.18-IL2) in patients with metastatic malignant melanoma. J Transl Med. 2009;7:68.

    PubMed Central  PubMed  Google Scholar 

  203. Rudman SM, Jameson MB, McKeage MJ, Savage P, Jodrell DI, Harries M, et al. A phase 1 study of AS1409, a novel antibody-cytokine fusion protein, in patients with malignant melanoma or renal cell carcinoma. Clin Cancer Res. 2011;17(7):1998–2005.

    CAS  PubMed Central  PubMed  Google Scholar 

  204. King DM, Albertini MR, Schalch H, Hank JA, Gan J, Surfus J, et al. Phase I clinical trial of the immunocytokine EMD 273063 in melanoma patients. J Clin Oncol. 2004;22(22):4463–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Niculescu-Duvaz I. Technology evaluation: EMD-273063, EMD Lexigen. Curr Opin Mol Ther. 2004;6(5):559–66.

    CAS  PubMed  Google Scholar 

  206. Osenga KL, Hank JA, Albertini MR, Gan J, Sternberg AG, Eickhoff J, et al. A phase I clinical trial of the hu14.18-IL2 (EMD 273063) as a treatment for children with refractory or recurrent neuroblastoma and melanoma: a study of the Children’s Oncology Group. Clin Cancer Res. 2006;12(6):1750–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Johnson TA, Press OW. Therapy of B-cell lymphomas with monoclonal antibodies and radioimmunoconjugates: the Seattle experience. Ann Hematol. 2000;79(4):175–82.

    CAS  PubMed  Google Scholar 

  208. Presta LG. Engineering of therapeutic antibodies to minimize immunogenicity and optimize function. Adv Drug Deliv Rev. 2006;58(5–6):640–56.

    CAS  PubMed  Google Scholar 

  209. Strome SE, Sausville EA, Mann D. A mechanistic perspective of monoclonal antibodies in cancer therapy beyond target-related effects. Oncologist. 2007;12(9):1084–95.

    CAS  PubMed  Google Scholar 

  210. Ha S, Ou Y, Vlasak J, Li Y, Wang S, Vo K, et al. Isolation and characterization of IgG1 with asymmetrical Fc glycosylation. Glycobiology. 2011;21(8):1087–96.

    CAS  PubMed  Google Scholar 

  211. Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem. 2002;277(30):26733–40.

    CAS  PubMed  Google Scholar 

  212. Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem. 2003;278(5):3466–73.

    CAS  PubMed  Google Scholar 

  213. Vaccaro C, Zhou J, Ober RJ, Ward ES. Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat Biotechnol. 2005;23(10):1283–8.

    CAS  PubMed  Google Scholar 

  214. Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N. An engineered human IgG1 antibody with longer serum half-life. J Immunol. 2006;176(1):346–56.

    CAS  PubMed  Google Scholar 

  215. Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, et al. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem. 2001;276(9):6591–604.

    CAS  PubMed  Google Scholar 

  216. Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM, Fox JA. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol. 1999;26(4 Suppl 12):60–70.

    CAS  PubMed  Google Scholar 

  217. Baselga J, Albanell J, Molina MA, Arribas J. Mechanism of action of trastuzumab and scientific update. Semin Oncol. 2001;28(5 Suppl 16):4–11.

    CAS  PubMed  Google Scholar 

  218. Salgaller ML. Technology evaluation: bevacizumab, Genentech/Roche. Curr Opin Mol Therapeut. 2003;5(6):657–67.

    CAS  Google Scholar 

  219. Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol. 2002;29(6 Suppl 16):10–4.

    CAS  PubMed  Google Scholar 

  220. Cerny T, Borisch B, Introna M, Johnson P, Rose AL. Mechanism of action of rituximab. Anticancer Drugs. 2002;13 Suppl 2:S3–10.

    CAS  PubMed  Google Scholar 

  221. Maloney DG, Smith B, Rose A. Rituximab: mechanism of action and resistance. Semin Oncol. 2002;29(1 Suppl 2):2–9.

    CAS  PubMed  Google Scholar 

  222. Brennan FR, Shaw L, Wing MG, Robinson C. Preclinical safety testing of biotechnology-derived pharmaceuticals: understanding the issues and addressing the challenges. Mol Biotechnol. 2004;27(1):59–74.

    CAS  PubMed  Google Scholar 

  223. PTC F. Points to consider in the manufacture and testing of monoclonal antibody products for human use: www.fda.gov/CBER/gdlns/ptc_mab.pdf.

  224. Kanekal S CB, Elliott G SDX-105 (Bendamustine) inhibits growth of SU-DHL-1 and Daudi lymphoma xenografts in SCID mice. Am Assoc Cancer Res 2004 45:(abstr 4575).

    Google Scholar 

  225. Pietras RJ, Poen JC, Gallardo D, Wongvipat PN, Lee HJ, Slamon DJ. Monoclonal antibody to HER-2/neureceptor modulates repair of radiation-induced DNA damage and enhances radiosensitivity of human breast cancer cells overexpressing this oncogene. Cancer Res. 1999;59(6):1347–55.

    CAS  PubMed  Google Scholar 

  226. Chapman K, Pullen N, Graham M, Ragan I. Preclinical safety testing of monoclonal antibodies: the significance of species relevance. Nat Rev Drug Discov. 2007;6(2):120–6.

    CAS  PubMed  Google Scholar 

  227. Hall WC, P-SS, Wicks J, Rojko JL. Tissue cross-reactivity studies for monoclonal antibodies: predictive value and use for selection of relevant animal species for toxicity testing. In: Cavagnaro JA, editor. Preclinical safety evaluation of biopharmaceuticals. Hoboken: Wiley; 2008. p. 207–40.

    Google Scholar 

  228. SMaM E. Selection of relevant species. In: Cavagnaro JA, editor. Preclinical safety evaluation of biopharmaceuticals. Hoboken: Wiley; 2008. p. 181–205.

    Google Scholar 

  229. Kelley SK, Gelzleichter T, Xie D, Lee WP, Darbonne WC, Qureshi F, et al. Preclinical pharmacokinetics, pharmacodynamics, and activity of a humanized anti-CD40 antibody (SGN-40) in rodents and non-human primates. Br J Pharmacol. 2006;148(8):1116–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  230. Scott AM, Lee FT, Tebbutt N, Herbertson R, Gill SS, Liu Z, et al. A phase I clinical trial with monoclonal antibody ch806 targeting transitional state and mutant epidermal growth factor receptors. Proc Natl Acad Sci U S A. 2007;104(10):4071–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  231. Herbertson RA, Tebbutt NC, Lee FT, MacFarlane DJ, Chappell B, Micallef N, et al. Phase I biodistribution and pharmacokinetic study of Lewis Y-targeting immunoconjugate CMD-193 in patients with advanced epithelial cancers. Clin Cancer Res. 2009;15(21):6709–15.

    CAS  PubMed  Google Scholar 

  232. Cheson BD, Leonard JP. Monoclonal antibody therapy for B-cell non-Hodgkin lymphoma. N Engl J Med. 2008;359(6):613–26.

    Google Scholar 

  233. Scott AM, Tebbutt N, Lee FT, Cavicchiolo T, Liu Z, Gill S, et al. A phase I biodistribution and pharmacokinetic trial of humanized monoclonal antibody Hu3s193 in patients with advanced epithelial cancers that express the Lewis-Y antigen. Clin Cancer Res. 2007;13(11):3286–92.

    CAS  PubMed  Google Scholar 

  234. de Bono JS, Ashworth A. Translating cancer research into targeted therapeutics. Nature. 2010;467(7315):543–9.

    PubMed  Google Scholar 

  235. Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8(6):473–80.

    CAS  PubMed  Google Scholar 

  236. Bhutani D, Vaishampayan UN. Monoclonal antibodies in oncology therapeutics: present and future indications. Expert Opin Biol Ther. 2013;13(2):269–82.

    CAS  PubMed  Google Scholar 

  237. Miller RA, Maloney DG, Warnke R, Levy R. Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med. 1982;306(9):517–22.

    CAS  PubMed  Google Scholar 

  238. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.

    CAS  PubMed  Google Scholar 

  239. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244(4905):707–12.

    CAS  PubMed  Google Scholar 

  240. O’Mahony D, Bishop MR. Monoclonal antibody therapy. Frontiers Biosci. 2006;11:1620–35.

    Google Scholar 

  241. Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, et al. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A. 1992;89(10):4285–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  242. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.

    CAS  PubMed  Google Scholar 

  243. Baselga J, Perez EA, Pienkowski T, Bell R. Adjuvant trastuzumab: a milestone in the treatment of HER-2-positive early breast cancer. Oncologist. 2006;11 Suppl 1:4–12.

    CAS  PubMed  Google Scholar 

  244. Awada A, Bozovic-Spasojevic I, Chow L. New therapies in HER2-positive breast cancer: a major step towards a cure of the disease? Cancer Treat Rev. 2012;38(5):494–504.

    CAS  PubMed  Google Scholar 

  245. Nahta R, Esteva FJ. Trastuzumab: triumphs and tribulations. Oncogene. 2007;26(25):3637–43.

    CAS  PubMed  Google Scholar 

  246. Huang Y, Fu P, Fan W. Novel targeted therapies to overcome trastuzumab resistance in HER2-overexpressing metastatic breast cancer. Curr Drug Targets. 2013;14(8):889–98.

    CAS  PubMed  Google Scholar 

  247. de Azambuja E, Bedard PL, Suter T, Piccart-Gebhart M. Cardiac toxicity with anti-HER-2 therapies: what have we learned so far? Target Oncol. 2009;4(2):77–88.

    PubMed  Google Scholar 

  248. Perez EA. Cardiac toxicity of ErbB2-targeted therapies: what do we know? Clin Breast Cancer. 2008;8 Suppl 3:S114–20.

    CAS  PubMed  Google Scholar 

  249. O’Sullivan CC, Swain SM. Pertuzumab: evolving therapeutic strategies in the management of HER2-overexpressing breast cancer. Expert Opin Biol Ther. 2013;13(5):779–90.

    PubMed  Google Scholar 

  250. Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci. 2001;114(Pt 5):853–65.

    CAS  PubMed  Google Scholar 

  251. Braghiroli MI, Sabbaga J, Hoff PM. Bevacizumab: overview of the literature. Exp Rev Anticancer Ther. 2012;12(5):567–80.

    CAS  Google Scholar 

  252. Heitz F, Harter P, Barinoff J, Beutel B, Kannisto P, Grabowski JP, et al. Bevacizumab in the treatment of ovarian cancer. Adv Ther. 2012;29(9):723–35.

    CAS  PubMed  Google Scholar 

  253. Dhillon S. Bevacizumab combination therapy: for the first-line treatment of advanced epithelial ovarian, fallopian tube or primary peritoneal cancer. Drugs. 2012;72(7):917–30.

    CAS  PubMed  Google Scholar 

  254. Stevenson CE, Nagahashi M, Ramachandran S, Yamada A, Bear HD, Takabe K. Bevacizumab and breast cancer: what does the future hold? Future Oncol. 2012;8(4):403–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  255. Macedo LT, da Costa Lima AB, Sasse AD. Addition of bevacizumab to first-line chemotherapy in advanced colorectal cancer: a systematic review and meta-analysis, with emphasis on chemotherapy subgroups. BMC Cancer. 2012;12:89.

    CAS  PubMed Central  PubMed  Google Scholar 

  256. Sandomenico C, Costanzo R, Carillio G, Piccirillo MC, Montanino A, Di Maio M, et al. Bevacizumab in non small cell lung cancer: development, current status and issues. Curr Med Chem. 2012;19(7):961–71.

    CAS  PubMed  Google Scholar 

  257. Sato S, Itamochi H. Bevacizumab and ovarian cancer. Curr Opin Obst Gynecol. 2012;24(1):8–13.

    Google Scholar 

  258. Cartwright TH. Adverse events associated with antiangiogenic agents in combination with cytotoxic chemotherapy in metastatic colorectal cancer and their management. Clin Colorectal Cancer. 2013;12(2):86–94.

    CAS  PubMed  Google Scholar 

  259. McCormack PL, Keam SJ. Bevacizumab: a review of its use in metastatic colorectal cancer. Drugs. 2008;68(4):487–506.

    CAS  PubMed  Google Scholar 

  260. Tappenden P, Jones R, Paisley S, Carroll C. Systematic review and economic evaluation of bevacizumab and cetuximab for the treatment of metastatic colorectal cancer. Health Technol Assess. 2007;11(12):1–128, iii-iv.

    CAS  PubMed  Google Scholar 

  261. Coiffier B. Rituximab therapy in malignant lymphoma. Oncogene. 2007;26(25):3603–13.

    CAS  PubMed  Google Scholar 

  262. Karlin L, Coiffier B. Improving survival and preventing recurrence of diffuse large B-cell lymphoma in younger patients: current strategies and future directions. OncoTarg Ther. 2013;6:289–96.

    Google Scholar 

  263. Plosker GL, Figgitt DP. Rituximab: a review of its use in non-Hodgkin lymphoma and chronic lymphocytic leukaemia. Drugs. 2003;63(8):803–43.

    Google Scholar 

  264. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16(8):2825–33.

    CAS  PubMed  Google Scholar 

  265. Hainsworth JD. Prolonging remission with rituximab maintenance therapy. Semin Oncol. 2004;31(1 Suppl 2):17–21.

    CAS  PubMed  Google Scholar 

  266. Morschhauser F, Radford J, Van Hoof A, Botto B, Rohatiner AZ, Salles G, et al. 90Yttrium-Ibritumomab Tiuxetan consolidation of first remission in advanced-stage follicular non-Hodgkin lymphoma: updated results after a median follow-up of 7.3 years from the International, Randomized, Phase III First-Line Indolent Trial. J Clin Oncol. 2013;31(16):1977–83.

    CAS  PubMed  Google Scholar 

  267. Wiernik PH, Adiga GU. Single-agent rituximab in treatment-refractory or poor prognosis patients with chronic lymphocytic leukemia. Curr Med Res Opin. 2011;27(10):1987–93.

    CAS  PubMed  Google Scholar 

  268. James DF, Kipps TJ. Rituximab in chronic lymphocytic leukemia. Adv Ther. 2011;28(7):534–54.

    CAS  PubMed  Google Scholar 

  269. Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. Cancer Immun. 2012;12:14.

    PubMed Central  PubMed  Google Scholar 

  270. Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Zitvogel L, Kroemer G, et al. Trial watch: monoclonal antibodies in cancer therapy. Oncoimmunol. 2013;2(1):e22789.

    Google Scholar 

  271. Seimetz D. Novel monoclonal antibodies for cancer treatment: the trifunctional antibody catumaxomab (removab). J Cancer Educ. 2011;2:309–16.

    CAS  Google Scholar 

  272. Boland WK, Bebb G. Nimotuzumab: a novel anti-EGFR monoclonal antibody that retains anti-EGFR activity while minimizing skin toxicity. Exp Opin Biol Ther. 2009;9(9):1199–206.

    CAS  Google Scholar 

  273. Reichert JM. Which are the antibodies to watch in 2013? MAbs. 2013;5(1):1–4.

    PubMed Central  PubMed  Google Scholar 

  274. Reichert JM, Dhimolea E. The future of antibodies as cancer drugs. Drug Discov Today. 2012;17(17–18):954–63.

    CAS  PubMed  Google Scholar 

  275. Heidenreich A, Rawal SK, Szkarlat K, Bogdanova N, Dirix L, Stenzl A, et al. A randomized, double-blind, multicenter, phase 2 study of a human monoclonal antibody to human alphanu integrins (intetumumab) in combination with docetaxel and prednisone for the first-line treatment of patients with metastatic castration-resistant prostate cancer. Ann Oncol. 2013;24(2):329–36.

    CAS  PubMed  Google Scholar 

  276. Chu FM, Picus J, Fracasso PM, Dreicer R, Lang Z, Foster B. A phase 1, multicenter, open-label study of the safety of two dose levels of a human monoclonal antibody to human alpha (v) integrins, intetumumab, in combination with docetaxel and prednisone in patients with castrate-resistant metastatic prostate cancer. Invest New Drugs. 2011;29(4):674–9.

    CAS  PubMed  Google Scholar 

  277. Kuenen B, Witteveen PO, Ruijter R, Giaccone G, Dontabhaktuni A, Fox F, et al. A phase I pharmacologic study of necitumumab (IMC-11F8), a fully human IgG1 monoclonal antibody directed against EGFR in patients with advanced solid malignancies. Clin Cancer Res. 2010;16(6):1915–23.

    CAS  PubMed  Google Scholar 

  278. Bebb G, Smith C, Rorke S, Boland W, Nicacio L, Sukhoo R, et al. Phase I clinical trial of the anti-EGFR monoclonal antibody nimotuzumab with concurrent external thoracic radiotherapy in Canadian patients diagnosed with stage IIb, III or IV non-small cell lung cancer unsuitable for radical therapy. Cancer Chemother Pharmacol. 2011;67(4):837–45.

    CAS  PubMed  Google Scholar 

  279. Choi HJ, Sohn JH, Lee CG, Shim HS, Lee IJ, Yang WI, et al. A phase I study of nimotuzumab in combination with radiotherapy in stages IIB-IV non-small cell lung cancer unsuitable for radical therapy: Korean results. Lung Cancer. 2011;71(1):55–9.

    PubMed  Google Scholar 

  280. van Oers MH. CD20 antibodies: type II to tango? Blood. 2012;119(22):5061–3.

    PubMed  Google Scholar 

  281. Robak T. GA-101, a third-generation, humanized and glyco-engineered anti-CD20 mAb for the treatment of B-cell lymphoid malignancies. Curr Opin Invest Drugs. 2009;10(6):588–96.

    CAS  Google Scholar 

  282. Owen C, Stewart DA. Obinutuzumab for the treatment of lymphoproliferative disorders. Exp Opin Biol Ther. 2012;12(3):343–51.

    CAS  Google Scholar 

  283. Salles G, Morschhauser F, Lamy T, Milpied N, Thieblemont C, Tilly H, et al. Phase 1 study results of the type II glycoengineered humanized anti-CD20 monoclonal antibody obinutuzumab (GA101) in B-cell lymphoma patients. Blood. 2012;119(22):5126–32.

    CAS  PubMed  Google Scholar 

  284. Nagorsen D, Kufer P, Baeuerle PA, Bargou R. Blinatumomab: a historical perspective. Pharmacol Therapeut. 2012;136(3):334–42.

    CAS  Google Scholar 

  285. D’Argouges S, Wissing S, Brandl C, Prang N, Lutterbuese R, Kozhich A, et al. Combination of rituximab with blinatumomab (MT103/MEDI-538), a T cell-engaging CD19-/CD3-bispecific antibody, for highly efficient lysis of human B lymphoma cells. Leuk Res. 2009;33(3):465–73.

    PubMed  Google Scholar 

  286. Topp MS, Gokbuget N, Zugmaier G, Degenhard E, Goebeler ME, Klinger M, et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood. 2012;120(26):5185–7.

    CAS  PubMed  Google Scholar 

  287. Kreitman RJ, Tallman MS, Robak T, Coutre S, Wilson WH, Stetler-Stevenson M, et al. Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol. 2012;30(15):1822–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  288. Kreitman RJ, Pastan I. Antibody fusion proteins: anti-CD22 recombinant immunotoxin moxetumomab pasudotox. Clin Cancer Res. 2011;17(20):6398–405.

    CAS  PubMed Central  PubMed  Google Scholar 

  289. Torabi-Rahvar M, Bozorgmehr M, Jeddi-Tehrani M, Zarnani AH. Potentiation strategies of dendritic cell-based antitumor vaccines: combinational therapy takes the front seat. Drug Discov Today. 2011;16(15–16):733–40.

    CAS  PubMed  Google Scholar 

  290. Shojaeian J, Jeddi-Tehrani M, Dokouhaki P, Mahmoudi AR, Ghods R, Bozorgmehr M, et al. Mutual helper effect in copulsing of dendritic cells with 2 antigens: a novel approach for improvement of dendritic-based vaccine efficacy against tumors and infectious diseases simultaneously. J Immunother. 2009;32(4):325–32.

    CAS  PubMed  Google Scholar 

  291. Zhang T, Herlyn D. Combination of active specific immunotherapy or adoptive antibody or lymphocyte immunotherapy with chemotherapy in the treatment of cancer. Cancer Immunol Immunother. 2009;58(4):475–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  292. Proietti E, Moschella F, Capone I, Belardelli F. Exploitation of the propulsive force of chemotherapy for improving the response to cancer immunotherapy. Mol Oncol. 2012;6(1):1–14.

    PubMed  Google Scholar 

  293. Wang L, Chen X, Li W, Sheng Z. Antiepidermal growth factor receptor monoclonal antibody improves survival outcomes in the treatment of patients with metastatic colorectal cancer. Anticancer Drugs. 2012;23(2):155–60.

    CAS  PubMed  Google Scholar 

  294. Jiang Q, Weiss JM, Back T, Chan T, Ortaldo JR, Guichard S, et al. mTOR kinase inhibitor AZD8055 enhances the immunotherapeutic activity of an agonist CD40 antibody in cancer treatment. Cancer Res. 2011;71(12):4074–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  295. Lin AY, Buckley NS, Lu AT, Kouzminova NB, Salpeter SR. Effect of KRAS mutational status in advanced colorectal cancer on the outcomes of anti-epidermal growth factor receptor monoclonal antibody therapy: a systematic review and meta-analysis. Clin Colorectal Cancer. 2011;10(1):63–9.

    CAS  PubMed  Google Scholar 

  296. Ma Y, Kepp O, Ghiringhelli F, Apetoh L, Aymeric L, Locher C, et al. Chemotherapy and radiotherapy: cryptic anticancer vaccines. Semin Immunol. 2010;22(3):113–24.

    PubMed  Google Scholar 

  297. Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst. 2013;105(4):256–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  298. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–9.

    CAS  PubMed  Google Scholar 

  299. Panaretakis T, Joza N, Modjtahedi N, Tesniere A, Vitale I, Durchschlag M, et al. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ. 2008;15(9):1499–509.

    CAS  PubMed  Google Scholar 

  300. Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM. Radiation-induced IFN-γ production within the tumor microenvironment influences antitumor immunity. J Immunol. 2008;180(5):3132–9.

    Google Scholar 

  301. Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO, et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol. 2008;181(5):3099–107.

    CAS  PubMed Central  PubMed  Google Scholar 

  302. Matsumura S, Demaria S. Up-regulation of the pro-inflammatory chemokine CXCL16 is a common response of tumor cells to ionizing radiation. Radiat Res. 2010;173(4):418–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  303. Hallahan DE, Spriggs DR, Beckett MA, Kufe DW, Weichselbaum RR. Increased tumor necrosis factor alpha mRNA after cellular exposure to ionizing radiation. Proc Natl Acad Sci U S A. 1989;86(24):10104–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  304. Ishihara H, Tsuneoka K, Dimchev AB, Shikita M. Induction of the expression of the interleukin-1 beta gene in mouse spleen by ionizing radiation. Radiat Res. 1993;133(3):321–6.

    CAS  PubMed  Google Scholar 

  305. Barcellos-Hoff MH, Derynck R, Tsang ML, Weatherbee JA. Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest. 1994;93(2):892–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  306. Jobling MF, Mott JD, Finnegan MT, Jurukovski V, Erickson AC, Walian PJ, et al. Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat Res. 2006;166(6):839–48.

    CAS  PubMed  Google Scholar 

  307. Tsai CS, Chen FH, Wang CC, Huang HL, Jung SM, Wu CJ, et al. Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth. Int J Radiat Oncol Biol Phys. 2007;68(2):499–507.

    CAS  PubMed  Google Scholar 

  308. Chiang CS, Fu SY, Wang SC, Yu CF, Chen FH, Lin CM, et al. Irradiation promotes an m2 macrophage phenotype in tumor hypoxia. Frontiers Oncol. 2012;2:89.

    CAS  Google Scholar 

  309. Schaue D, Comin-Anduix B, Ribas A, Zhang L, Goodglick L, Sayre JW, et al. T-cell responses to survivin in cancer patients undergoing radiation therapy. Clin Cancer Res. 2008;14(15):4883–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  310. Schaue D, Xie MW, Ratikan JA, McBride WH. Regulatory T cells in radiotherapeutic responses. Frontiers Oncol. 2012;2:90.

    CAS  Google Scholar 

  311. Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP, et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res. 2005;11(2 Pt 1):728–34.

    CAS  PubMed  Google Scholar 

  312. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15(17):5379–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  313. Shi W, Siemann DW. Augmented antitumor effects of radiation therapy by 4-1BB antibody (BMS-469492) treatment. Anticancer Res. 2006;26(5A):3445–53.

    CAS  PubMed  Google Scholar 

  314. Newcomb EW, Lukyanov Y, Kawashima N, Alonso-Basanta M, Wang SC, Liu M, et al. Radiotherapy enhances antitumor effect of anti-CD137 therapy in a mouse Glioma model. Radiat Res. 2010;173(4):426–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  315. Verbrugge I, Hagekyriakou J, Sharp LL, Galli M, West A, McLaughlin NM, et al. Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies. Cancer Res. 2012;72(13):3163–74.

    CAS  PubMed  Google Scholar 

  316. Slovin SF, Higano CS, Hamid O, Tejwani S, Harzstark A, Alumkal JJ, et al. Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol. 2013;24(7):1813–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  317. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366(10):925–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  318. Schaue D, Ratikan JA, Iwamoto KS, McBride WH. Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys. 2012;83(4):1306–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  319. Li Q, Iuchi T, Jure-Kunkel MN, Chang AE. Adjuvant effect of anti-4-1BB mAb administration in adoptive T cell therapy of cancer. Int J Biol Sci. 2007;3(7):455–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  320. Lee H, Park HJ, Sohn HJ, Kim JM, Kim SJ. Combinatorial therapy for liver metastatic colon cancer: dendritic cell vaccine and low-dose agonistic anti-4-1BB antibody co-stimulatory signal. J Surg Res. 2011;169(1):e43–50.

    CAS  PubMed  Google Scholar 

  321. Sanchez C, Chan R, Bajgain P, Rambally S, Palapattu G, Mims M, et al. Combining T-cell immunotherapy and anti-androgen therapy for prostate cancer. Prostate Cancer Prostatic Dis. 2013;16(2):123–31.

    CAS  PubMed  Google Scholar 

  322. Lindzen M, Lavi S, Leitner O, Yarden Y. Tailored cancer immunotherapy using combinations of chemotherapy and a mixture of antibodies against EGF-receptor ligands. Proc Natl Acad Sci U S A. 2010;107(28):12559–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  323. Beyer I, van Rensburg R, Strauss R, Li Z, Wang H, Persson J, et al. Epithelial junction opener JO-1 improves monoclonal antibody therapy of cancer. Cancer Res. 2011;71(22):7080–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  324. Ferris RL, Jaffee EM, Ferrone S. Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. J Clin Oncol. 2010;28(28):4390–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  325. Juhl H, Helmig F, Baltzer K, Kalthoff H, Henne-Bruns D, Kremer B. Frequent expression of complement resistance factors CD46, CD55, and CD59 on gastrointestinal cancer cells limits the therapeutic potential of monoclonal antibody 17-1A. J Surg Oncol. 1997;64(3):222–30.

    CAS  PubMed  Google Scholar 

  326. Jarvis GA, Li J, Hakulinen J, Brady KA, Nordling S, Dahiya R, et al. Expression and function of the complement membrane attack complex inhibitor protectin (CD59) in human prostate cancer. Int J Cancer. 1997;71(6):1049–55.

    CAS  PubMed  Google Scholar 

  327. Ge X, Wu L, Hu W, Fernandes S, Wang C, Li X, et al. rILYd4, a human CD59 inhibitor, enhances complement-dependent cytotoxicity of ofatumumab against rituximab-resistant B-cell lymphoma cells and chronic lymphocytic leukemia. Clin Cancer Res. 2011;17(21):6702–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  328. Coral S, Fonsatti E, Sigalotti L, De Nardo C, Visintin A, Nardi G, et al. Overexpression of protectin (CD59) down-modulates the susceptibility of human melanoma cells to homologous complement. J Cell Physiol. 2000;185(3):317–23.

    CAS  PubMed  Google Scholar 

  329. Borgerding A, Hasenkamp J, Engelke M, Burkhart N, Trumper L, Wienands J, et al. B-lymphoma cells escape rituximab-triggered elimination by NK cells through increased HLA class I expression. Exp Hematol. 2010;38(3):213–21.

    CAS  PubMed  Google Scholar 

  330. Ugurel S, Reinhold U, Tilgen W. HLA-G in melanoma: a new strategy to escape from immunosurveillance? Onkologie. 2002;25(2):129–34.

    CAS  PubMed  Google Scholar 

  331. Ibrahim EC, Aractingi S, Allory Y, Borrini F, Dupuy A, Duvillard P, et al. Analysis of HLA antigen expression in benign and malignant melanocytic lesions reveals that upregulation of HLA-G expression correlates with malignant transformation, high inflammatory infiltration and HLA-A1 genotype. Int J Cancer. 2004;108(2):243–50.

    CAS  PubMed  Google Scholar 

  332. Alkhouly N, Shehata I, Ahmed MB, Shehata H, Hassan S, Ibrahim T. HLA-G expression in acute lymphoblastic leukemia: a significant prognostic tumor biomarker. Med Oncol. 2013;30(1):460.

    PubMed  Google Scholar 

  333. Small GW, McLeod HL, Richards KL. Analysis of innate and acquired resistance to anti-CD20 antibodies in malignant and nonmalignant B cells. Peer J. 2013;1:e31.

    PubMed Central  PubMed  Google Scholar 

  334. Czuczman MS, Olejniczak S, Gowda A, Kotowski A, Binder A, Kaur H, et al. Acquirement of rituximab resistance in lymphoma cell lines is associated with both global CD20 gene and protein down-regulation regulated at the pretranscriptional and posttranscriptional levels. Clin Cancer Res. 2008;14(5):1561–70.

    CAS  PubMed  Google Scholar 

  335. Golay J, Lazzari M, Facchinetti V, Bernasconi S, Borleri G, Barbui T, et al. CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59. Blood. 2001;98(12):3383–9.

    CAS  PubMed  Google Scholar 

  336. Nahta R, Esteva FJ. HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res. 2006;8(6):215.

    PubMed Central  PubMed  Google Scholar 

  337. Price-Schiavi SA, Jepson S, Li P, Arango M, Rudland PS, Yee L, et al. Rat Muc4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance. Int J Cancer. 2002;99(6):783–91.

    CAS  PubMed  Google Scholar 

  338. Nagy P, Friedlander E, Tanner M, Kapanen AI, Carraway KL, Isola J, et al. Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res. 2005;65(2):473–82.

    CAS  PubMed  Google Scholar 

  339. Thomas SM, Bhola NE, Zhang Q, Contrucci SC, Wentzel AL, Freilino ML, et al. Cross-talk between G protein-coupled receptor and epidermal growth factor receptor signaling pathways contributes to growth and invasion of head and neck squamous cell carcinoma. Cancer Res. 2006;66(24):11831–9.

    CAS  PubMed  Google Scholar 

  340. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486(7404):532–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  341. Yonesaka K, Zejnullahu K, Okamoto I, Satoh T, Cappuzzo F, Souglakos J, et al. Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci Transl Med. 2011;3(99):99ra86.

    PubMed Central  PubMed  Google Scholar 

  342. Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26(35):5705–12.

    PubMed  Google Scholar 

  343. De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11(8):753–62.

    PubMed  Google Scholar 

  344. Beckman RA, Weiner LM, Davis HM. Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer. 2007;109(2):170–9.

    CAS  PubMed  Google Scholar 

  345. Fujimori K, Covell DG, Fletcher JE, Weinstein JN. A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J Nucl Med. 1990;31(7):1191–8.

    CAS  PubMed  Google Scholar 

  346. Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res. 2001;61(12):4750–5.

    CAS  PubMed  Google Scholar 

  347. Rudnick SI, Lou J, Shaller CC, Tang Y, Klein-Szanto AJ, Weiner LM, et al. Influence of affinity and antigen internalization on the uptake and penetration of Anti-HER2 antibodies in solid tumors. Cancer Res. 2011;71(6):2250–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  348. Koene HR, Kleijer M, Algra J, Roos D, von dem Borne AE, de Haas M. Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood. 1997;90(3):1109–14.

    CAS  PubMed  Google Scholar 

  349. Wu J, Edberg JC, Redecha PB, Bansal V, Guyre PM, Coleman K, et al. A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest. 1997;100(5):1059–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  350. Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21(21):3940–7.

    CAS  PubMed  Google Scholar 

  351. Preithner S, Elm S, Lippold S, Locher M, Wolf A, da Silva AJ, et al. High concentrations of therapeutic IgG1 antibodies are needed to compensate for inhibition of antibody-dependent cellular cytotoxicity by excess endogenous immunoglobulin G. Mol Immunol. 2006;43(8):1183–93.

    CAS  PubMed  Google Scholar 

  352. Nimmerjahn F, Ravetch JV. Antibodies, Fc receptors and cancer. Curr Opin Immunol. 2007;19(2):239–45.

    CAS  PubMed  Google Scholar 

  353. Giritch A, Marillonnet S, Engler C, van Eldik G, Botterman J, Klimyuk V, et al. Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proc Natl Acad Sci U S A. 2006;103(40):14701–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  354. Graumann K, Premstaller A. Manufacturing of recombinant therapeutic proteins in microbial systems. Biotech J. 2006;1(2):164–86.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Jeddi-Tehrani PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zarnani, AH., Bozorgmehr, M., Shabani, M., Barzegar-Yarmohammadi, L., Ghaemimanesh, F., Jeddi-Tehrani, M. (2015). Monoclonal Antibodies for Cancer Immunotherapy. In: Rezaei, N. (eds) Cancer Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44946-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44946-2_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44945-5

  • Online ISBN: 978-3-662-44946-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics