Skip to main content

A Robust Least Squares Solution to the Calibrated Two-View Geometry with Two Known Orientation Angles

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics -- Theory and Applications (VISIGRAPP 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 458))

Abstract

This paper proposes a robust least squares solution to the calibrated two-view geometry with two known orientation angles. Using the knowledge reduces the degrees of freedom (DoF) from five to three: one from a remaining angle and two from a translation vector. This paper determines that the three parameters are obtained by solving a minimization problem of the smallest eigenvalue containing the unknown angle. The proposed solution minimizes a new simple cost function based on the matrix determinant in order to avoid the complicated eigenvalue computation. The estimated parameters are optimal since the cost function is minimized under three DoFs. Experimental results of synthetic data show that the robustness of the proposed solution is up to 1.5\(^\circ \) angle noise, which is approximately three times that of a conventional solution. Moreover, 60 point correspondences, fewer than half those in conventional solutions, are sufficient to reach the performance boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.vis.uky.edu/~stewe/FIVEPOINT/

  2. 2.

    http://cmp.felk.cvut.cz/minimal/automatic_generator.php

  3. 3.

    The original derivation of Kalantari et al. [16] assumes that the unknown orientation angle is around y-axis, not z-axis as in this paper.

References

  1. Philip, J.: A non-iterative algorithm for determining all essential matrices corresponding to five point pairs. Photogram. Rec. 15, 589–599 (1996)

    Article  Google Scholar 

  2. Triggs, B.: Routines for relative pose of two calibrated cameras from 5 points. Technical Report, INRIA (2000)

    Google Scholar 

  3. Nistér, D.: An efficient solution to the five-point relative pose problem. In: Proceedings 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, II-195. IEEE (2003)

    Google Scholar 

  4. Stewénius, H., Engels, C., Nistér, D.: Recent developments on direct relative orientation. ISPRS J. Photogrammetry Remote Sens. 60, 284–294 (2006)

    Article  Google Scholar 

  5. Li, H., Hartley, R.: Five-point motion estimation made easy. In: 18th International Conference on Pattern Recognition, 2006, ICPR 2006, vol. 1, pp. 630–633. IEEE (2006)

    Google Scholar 

  6. Kukelova, Z., Bujnak, M., Pajdla, T.: Polynomial eigenvalue solutions to the 5-pt and 6-pt relative pose problems. BMVC 2008, 2 (2008)

    Google Scholar 

  7. Kalantari, M., Jung, F., Guedon, J., Paparoditis, N.: The five points pose problem: A new and accurate solution adapted to any geometric configuration. In: Wada, T., Huang, F., Lin, S. (eds.) PSIVT 2009. LNCS, vol. 5414, pp. 215–226. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Pizarro, O., Eustice, R., Singh, H.: Relative pose estimation for instrumented, calibrated imaging platforms. In: Proceedings of Digital Image Computing Techniques and Applications, pp. 601–612, Sydney, Australia (2003)

    Google Scholar 

  9. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518

    Book  MATH  Google Scholar 

  10. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  11. Kalantari, M., Hashemi, A., Jung, F., Guédon, J.P.: A new solution to the relative orientation problem using only 3 points and the vertical direction. CoRR abs/0905.3964 (2009)

    Google Scholar 

  12. Fraundorfer, F., Tanskanen, P., Pollefeys, M.: A minimal case solution to the calibrated relative pose problem for the case of two known orientation angles. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 269–282. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. The MIT Press, Cambridge (1993)

    Google Scholar 

  14. Horn, B.K.P.: Recovering baseline and orientation from essential matrix. J. Optical Soc. Am. (1990)

    Google Scholar 

  15. Cox, D.A., Little, J.B., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Springer, New York (2005)

    MATH  Google Scholar 

  16. Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic Generator of Minimal Problem Solvers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 302–315. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Sinha, S.N., Frahm, J.M., Pollefeys, M., Genc, Y.: Gpu-based video feature tracking and matching. In: EDGE, Workshop on Edge Computing Using New Commodity Architectures, vol. 278, p. 4321 (2006)

    Google Scholar 

  18. Terriberry, T.B., French, L.M., Helmsen, J.: Gpu accelerating speeded-up robust features. In: Proceedings of 3DPVT ’08 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaku Nakano .

Editor information

Editors and Affiliations

Appendix

Appendix

The proof of that the proposed 4-point algorithm including the 3-point algorithm is as follows.

Substituting three point correspondences into (17), we have

$$\begin{aligned} \begin{aligned} \frac{d}{d\theta } \mathrm {det}(\varvec{B}^T \varvec{B})&= \frac{d}{d\theta } \mathrm {det}(\varvec{A}^{T}\varvec{A}) \\&= \frac{d}{d\theta } \mathrm {det}(\varvec{A})^2 \\&= 2 \mathrm {det}(\varvec{A}) \frac{d}{d\theta } \mathrm {det}(\varvec{A}). \end{aligned} \end{aligned}$$
(20)

We can construct a system of polynomial equations as follows:

$$\begin{aligned} \left\{ \begin{aligned} f_3 (c,s)&= \mathrm {det}(\varvec{A}) \frac{d}{d\theta } \mathrm {det}(\varvec{A}) \Bigr |_{ \mathop {\scriptscriptstyle \sin \theta =s}\limits ^{\scriptscriptstyle \cos \theta =c,} } = 0, \\ g(c,s)&= c^2+s^2-1 = 0. \end{aligned} \right. \end{aligned}$$
(21)

The solutions of \(\mathrm {Res}(f_3,g,c)=0\) include that of \(\mathrm {Res}(f_1,g,c)=0\).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakano, G., Takada, J. (2014). A Robust Least Squares Solution to the Calibrated Two-View Geometry with Two Known Orientation Angles. In: Battiato, S., Coquillart, S., Laramee, R., Kerren, A., Braz, J. (eds) Computer Vision, Imaging and Computer Graphics -- Theory and Applications. VISIGRAPP 2013. Communications in Computer and Information Science, vol 458. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44911-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44911-0_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44910-3

  • Online ISBN: 978-3-662-44911-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics