Real-Time Lattice Boltzmann Shallow Waters Method for Breaking Wave Simulations

  • Jesus OjedaEmail author
  • Antonio Susín
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 458)


We present a new approach for the simulation of surface-based fluids based in a hybrid formulation of Lattice Boltzmann Method for Shallow Waters and particle systems. The modified LBM can handle arbitrary underlying terrain conditions and arbitrary fluid depth. It also introduces a novel method for tracking dry-wet regions and moving boundaries. Dynamic rigid bodies are also included in our simulations using a two-way coupling. Certain features of the simulation that the LBM can not handle because of its heightfield nature, as breaking waves, are detected and automatically turned into splash particles. Here we use a ballistic particle system, but our hybrid method can handle more complex systems as SPH. Both the LBM and particle systems are implemented in CUDA, although dynamic rigid bodies are simulated in CPU. We show the effectiveness of our method with various examples which achieve real-time on consumer-level hardware.


Fluid simulation Natural phenomena Physically-based animation 



With the support of the Research Project TIN2010-20590-C02-01 of the Spanish Government.


  1. 1.
    Tessendorf, J.: Simulating ocean water. In: SIGGRAPH Course Notes (1999)Google Scholar
  2. 2.
    Hinsinger, D., Neyret, F., Cani, M.P.: Interactive animation of ocean waves. In: SCA, pp. 161–166 (2002)Google Scholar
  3. 3.
    Kass, M., Miller, G.: Rapid, stable fluid dynamics for computer graphics. In: SIGGRAPH, pp. 49–57 (1990)Google Scholar
  4. 4.
    O’Brien, J.F., Hodgins, J.K.: Dynamic simulation of splashing fluids. In: Proceedings of the Computer Animation, CA ’95, pp. 198–205 (1995)Google Scholar
  5. 5.
    Št’ava, O., Beneš, B., Brisbin, M., Křivánek, J.: Interactive terrain modeling using hydraulic erosion. In: SCA, pp. 201–210 (2008)Google Scholar
  6. 6.
    Yuksel, C., House, D.H., Keyser, J.: Wave particles. ACM Trans. Graph. 26, 99 (2007)CrossRefGoogle Scholar
  7. 7.
    Layton, A.T., van de Panne, M.: A numerically efficient and stable algorithm for animating water waves. Vis. Comput. 18, 41–53 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Thürey, N., Müller-Fischer, M., Schirm, S., Gross, M.: Real-time breaking waves for shallow water simulations. In: 15th Pacific Conference on Computer Graphics and Applications, pp. 39–46 (2007)Google Scholar
  9. 9.
    Chentanez, N., Müller, M.: Real-time simulation of large bodies of water with small scale details. In: SCA, pp. 197–206 (2010)Google Scholar
  10. 10.
    Cords, H.: Mode-splitting for highly detailed, interactive liquid simulation. In: GRAPHITE, pp. 265–272 (2007)Google Scholar
  11. 11.
    Lee, H., Han, S.: Solving the shallow water equations using 2d sph particles for interactive applications. Vis. Comput. 26, 865–872 (2010)CrossRefGoogle Scholar
  12. 12.
    Solenthaler, B., Bucher, P., Chentanez, N., Müller, M., Gross, M.: SPH based shallow water simulation. In: VRIPHYS, pp. 39–46 (2011)Google Scholar
  13. 13.
    Salmon, R.: The lattice boltzmann method as a basis for ocean circulation modeling. J. Mar. Res. 57, 503–535 (1999)CrossRefGoogle Scholar
  14. 14.
    Thürey, N.: Physically based animation of free surface flows with the lattice boltzmann method. Ph.D. thesis, Dept. of Computer Science 10, University of Erlangen-Nuremberg (2007)Google Scholar
  15. 15.
    Thömmes, G., Seaïd, M., Banda, M.K.: Lattice boltzmann methods for shallow water flow applications. Int. J. Numer. Meth. Fluids 55, 673–692 (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Zhou, J.G.: Enhancement of the labswe for shallow water flows. J. Comput. Phys. 230, 394–401 (2011)CrossRefzbMATHGoogle Scholar
  17. 17.
    Wei, X., Li, W., Mueller, K., Kaufman, A.: The lattice-boltzmann method for simulating gaseous phenomena. IEEE Trans. Vis. Comput. Graph. 10, 164–176 (2004)CrossRefGoogle Scholar
  18. 18.
    Tölke, J.: Implementation of a lattice boltzmann kernel using the compute unified device architecture developed by nvidia. Comput. Vis. Sci. 13, 29–39 (2010)CrossRefGoogle Scholar
  19. 19.
    Obrecht, C., Kuznik, F., Tourancheau, B., Roux, J.J.: A new approach to the lattice boltzmann method for graphics processing units. Comput. Math. Appl. 61, 3628–3638 (2011)CrossRefzbMATHGoogle Scholar
  20. 20.
    Bailey, P., Myre, J., Walsh, S., Lilja, D., Saar, M.: Accelerating lattice boltzmann fluid flow simulations using graphics processors. In: International Conference on Parallel Processing, pp. 550–557 (2009)Google Scholar
  21. 21.
    Geveler, M., Ribbrock, D., Göddeke, D., Turek, S.: Lattice-Boltzmann simulation of the Shallow-Water equations with fluid-structure interaction on multi- and manycore processors. In: Keller, R., Kramer, D., Weiss, J.-P. (eds.) Facing the Multicore-Challenge. LNCS, vol. 6310, pp. 92–104. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Qian, Y.H., D’Humières, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation. EPL (Europhysics Letters) 17, 479 (1992)CrossRefzbMATHGoogle Scholar
  23. 23.
    Zhou, J.G.: Lattice Boltzmann Methods for Shallow Water Flows. Springer, New York (2004)CrossRefzbMATHGoogle Scholar
  24. 24.
    Hou, S., Sterling, J., Chen, S., Doolen, G.D.: A lattice boltzmann subgrid model for high reynolds number flows. Fields Inst. Commun. 6, 151–166 (1996)MathSciNetGoogle Scholar
  25. 25.
    He, X., Luo, L.S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811–6817 (1997)CrossRefGoogle Scholar
  26. 26.
    Goswami, P., Schlegel, P., Solenthaler, B., Pajarola, R.: Interactive SPH simulation and rendering on the GPU. In: SCA, pp. 55–64 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Dept. LSIUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Dept. MA1Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations