Skip to main content

Ionic Liquid and Cellulose Technologies: Dissolution, Modification and Composite Preparation

  • Chapter
Book cover Applications of Ionic Liquids in Polymer Science and Technology

Abstract

This chapter summarizes the recent advances in the development of new cellulose technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to produce new processing technologies, cellulose functionalization, and new cellulose materials including blends, composites, fibers, and ion gels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Sullivan AC (1997) Cellulose: structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  2. Schönbein CF (1847) Notiz über eine Veränderung der Pflanzenfaser und einiger andern organischen Substanzen. Ber Naturforsch Ges Basel 7:27

    Google Scholar 

  3. Hyatt JW (1880) Manufacture of celluloid. US Patent, 232,037

    Google Scholar 

  4. Cross CF, Bevan BT, Beadle C (1893) Thiokohlensäureester der Cellulose. Ber Dtsch Chem Ges 26:1090–1097

    Article  Google Scholar 

  5. Cross CF, Bevan BT, Beadle C (1893) Die Chemie der Pflanzenfasern. Cellulosen, Oxycellulosen. Lignocellul Ber Dtsch Chem Ges 26:2520–2533

    Article  Google Scholar 

  6. Petersen RC (1984) Chapter 2: the chemical composition of wood. In: The chemistry of solid wood. American Chemical Society, Washington, DC, pp 57–126

    Google Scholar 

  7. Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537

    Article  Google Scholar 

  8. Heinze T, Koschella A (2005) Solvents applied in the field of cellulose chemistry: a mini review. Polímeros: Ciência e Tecnologia 15:84–90

    Article  Google Scholar 

  9. Schobitz M, Meister F, Heinze T (2009) Unconventional reactivity of cellulose dissolved in ionic liquids. Macromol Symp 280:102–111

    Article  Google Scholar 

  10. Woodings C (2001) Regenerated cellulose fibers. Woodhead Publishing/CRC Press LLC, Cornwall

    Book  Google Scholar 

  11. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  Google Scholar 

  12. Lu B, Xu A, Wang J (2014) Cation does matter: how cationic structure affects the dissolution of cellulose in ionic liquids. Green Chem. doi:10.1039/C3GC41733F

    Google Scholar 

  13. Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    Article  ADS  Google Scholar 

  14. Liu Z, Wang H, Li Z, Lu X, Zhang X, Zhang S, Zhou K (2011) Characterization of the regenerated cellulose films in ionic liquids and rheological properties of the solutions. Mater Chem Phys 128:220–227

    Article  Google Scholar 

  15. Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587

    Article  Google Scholar 

  16. Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules 7:3295–3297

    Article  Google Scholar 

  17. Barthell S, Heinze T (2005) Acylation and carbanilation of cellulose in ionic liquids. Green Chem 8:301–306

    Article  Google Scholar 

  18. Zhao H, Baker GA, Song Z, Olubajo O, Crittle T, Peters D (2008) Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem 10:696–705

    Article  Google Scholar 

  19. Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525

    Article  Google Scholar 

  20. Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem 11:417–424

    Article  Google Scholar 

  21. Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66

    Article  Google Scholar 

  22. Xie H, Zhang S, Li S (2005) Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem 8:630–633

    Article  Google Scholar 

  23. Wu Y, Sasaki T, Irie S, Sakurai K (2008) A novel biomass-ionic liquid platform for the utilization of native chitin. Polymer 49:2321–2327

    Article  Google Scholar 

  24. Lacroix C, Sultan E, Fleury E, Charlot A (2012) Functional galactomannan platform from convenient esterification in imidazolium-based ionic liquids. Polym Chem 3:538

    Article  Google Scholar 

  25. Kadokawa J, Kato T, Setoyama M, Yamamoto K (2013) Preparation of galactomannan-based materials compatibilized with ionic liquids. J Polym Environ 21:512–519

    Article  Google Scholar 

  26. Liu W, Budtova T (2013) Dissolution of unmodified waxy starch in ionic liquid and solution rheological properties. Carbohydr Polym 93:199–206

    Article  Google Scholar 

  27. Fort DA, Swatloski RP, Moyna P, Rogers RD, Moyna G (2006) Use of ionic liquids in the study of fruit ripening by high-resolution 13C NMR spectroscopy: ‘green’ solvents meet green bananas. Chem Commun 7:714–716

    Google Scholar 

  28. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    Article  Google Scholar 

  29. Edgar KJ, Arnold KM, Blount WW, Lawniczak JE, Lowman DW (1995) Synthesis and properties of cellulose acetoacetates. Macromolecules 28:4122–4128

    Article  ADS  Google Scholar 

  30. Liebert TF, Heinze TJ (2001) Exploitation of reactivity and selectivity in cellulose functionalization using unconventional media for the design of products showing new superstructures. Biomacromolecules 2:1124–1132

    Article  Google Scholar 

  31. Heinze T, Schaller J (2000) New water soluble cellulose esters synthesized by an effective acylation procedure. Macromol Chem Phys 201:1214–1218

    Article  Google Scholar 

  32. Regiani AM, Frollini E, Marson GA, Arantes GM, El Seoud OM (1998) Some aspects of acylation of cellulose under homogeneous solution conditions. J Polym Sci Part A: Polym Chem 37:1357–1363

    Article  ADS  Google Scholar 

  33. Fischer S, Voigt W, Fischer K (1999) The behaviour of cellulose in hydrated melts of the composition LiX n H2O (XDI, NO−3, CH3COO, ClO−4). Cellulose 6:213–219

    Article  Google Scholar 

  34. Fischer S, Thummler K, Pfeiffer K, Liebert T, Heinze T (2002) Evaluation of molten inorganic salt hydrates as reaction medium for the derivatization of cellulose. Cellulose 9:293–300

    Article  Google Scholar 

  35. Cao Y, Meng T, Zhang J, He J, Li H, Zhang Y (2007) Acetone-soluble cellulose acetate prepared by one-step homogeneous acetylation of cornhusk cellulose in an ionic liquid 1-allyl-3-methylimidazolium chloride (AMIMCl). Carbohydr Polym 69:665–672

    Article  Google Scholar 

  36. Pabby AK, Rizvi SSH, Sastre AM (2009) Handbook of membrane separations: chemical, pharmaceutical, food and biotechnological applications. CRC Press/Taylor & Francis Group, New York

    Google Scholar 

  37. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 2(44):3358–3393

    Article  Google Scholar 

  38. Erdmenger T, Haensch C, Hoogenboom R, Schubert U (2007) Homogeneous trytilation of cellulose in 1-butyl-3-methylimidazolium chloride. Macromol Biosci 7:440–445

    Article  Google Scholar 

  39. Kohler S, Liebert T, Heinze T (2008) Interactions of ionic liquids with polysaccharides. VI. Pure cellulose nanoparticles from trimethylsilyl cellulose synthesized in ionic liquids. J Polym Sci Part A: Polym Chem 46:4070–4080

    Article  ADS  Google Scholar 

  40. Liebert T, Hansch C, Heinze T (2006) Click chemistry with polysaccharides. Macromol Rapid Commun 27:208–213

    Article  Google Scholar 

  41. Song Y, Sun Y, Zhang X, Zhou J, Zhang L (2008) Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules 9:2259–2264

    Article  Google Scholar 

  42. Tome LC, Freire MG, Rebelo LPN, Silvestre AJD, Neto JP, Marrucho IM, Freire CSR (2011) Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. Green Chem 13:2464–2470

    Article  Google Scholar 

  43. Semsarilar M, Ladmiral V, Perrier S (2010) Synthesis of a cellulose supported chain transfer agent and its application to RAFT polymerization. J Polym Sci Part A: Polym Chem 48:4361–4365

    Article  ADS  Google Scholar 

  44. Lin C, Zhan H, Liu M, Fu S, Lucia LA (2009) Novel preparation and characterization of cellulose microparticles functionalized in ionic liquids. Langmuir 25:10116–10120

    Article  Google Scholar 

  45. Yan C, Zhang J, Lv Y, Yu J, Wu J, Zhang J, He J (2009) Thermoplastic cellulose-graft-poly (l-lactide) copolymers homogeneously synthesized in an ionic liquid with 4-dimethylaminopyridine catalyst. Biomacromolecules 10:2013–2018

    Google Scholar 

  46. Zhu J, Wang W-T, Wang X-L, Li B, Wang Y-Z (2009) Green synthesis of a novel biodegradable copolymer base on cellulose and poly(p-dioxanone) in ionic liquid. Carbohydr Polym 76:139–144

    Article  Google Scholar 

  47. Meng T, Gao X, Zhang J, Yuan J, Zhang Y, He J (2009) Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose. Polymer 50:447–454

    Article  Google Scholar 

  48. Lindqvist J, Malmstrom E (2006) Surface modification of natural substrates by atom transfer radical polymerization. J Polym Sci Part A: Polym Chem 100:4155–4162

    Google Scholar 

  49. Zhang Y, Li H, Li X, Gibril ME, Han K, Yu M (2013) Green chemical preparation of cellulose/high performance elastomer blend fibers by melt-spinning method. J Polym Res 20(171):1–9

    MATH  Google Scholar 

  50. Kadokawa J, Murakami M, Takegawa A, Kaneko Y (2009) Preparation of cellulose–starch composite gel and fibrous material from a mixture of the polysaccharides in ionic liquid. Carbohydr Polym 75:180–183

    Article  Google Scholar 

  51. Cao Y, Li H, Zhang J (2011) Homogeneous synthesis and characterization of cellulose acetate butyrate (CAB) in 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid. Ind Eng Chem Res 50:7808–7814

    Article  Google Scholar 

  52. Sun N, Swatloski RP, Maxim ML, Rahman M, Harland AG, Haque A, Spear SK, Daly TD, Rogers RD (2008) Magnetite-embedded cellulose fibers prepared from ionic liquid. J Mater Chem 18:283–290

    Article  Google Scholar 

  53. Hameed N, Guo Q (2010) Blend films of natural wool and cellulose prepared from an ionic liquid. Cellulose 17:803–813

    Article  Google Scholar 

  54. Murakami M, Kaneko Y, Kadokawa J (2007) Preparation of cellulose-polymerized ionic liquid composite by in-situ polymerization of polymerizable ionic liquid in cellulose-dissolving solution. Carbohydr Polym 69:378–381

    Article  Google Scholar 

  55. Kadokawa J, Murakami M, Kaneko Y (2008) A facile method for preparation of composites composed of cellulose and a polystyrene-type polymeric ionic liquid using a polymerizable ionic liquid. Compos Sci Technol 68:493–498

    Article  Google Scholar 

  56. Sperling LH (2004) Interpenetrating polymer networks. Encyclopedia of polymer science and technology. John Wiley & Sons, Inc., New York

    Google Scholar 

  57. Takegawa A, Murakami M, Kaneko Y, Kadokawa J-I (2009) A facile preparation of composites composed of cellulose and polymeric ionic liquids by in situ polymerization of ionic liquids having acrylate groups. Polym Compos 30:1837–1841

    Article  Google Scholar 

  58. Prasad K, Mine S, Kaneko Y, Kadokawa J (2010) Preparation of cellulose-based ionic porous material compatibilized with polymeric ionic liquid. Polym Bull 64:341–349

    Article  Google Scholar 

  59. Isik M, Gracia R, Kollnus LC, Tome LC, Marrucho IM, Mecerreyes D (2013) Cholinium-based poly(ionic liquid)s: synthesis, characterization and application as biocompatible ion gels and cellulose coatings. ACS Macro Lett 2:975–979

    Article  Google Scholar 

  60. Kadokawa J, Murakami M, Kaneko Y (2008) A facile preparation of gel materials from a solution of cellulose in ionic liquid. Carbohydr Res 343:769–772

    Article  Google Scholar 

  61. Frey MW (2008) Electrospinning cellulose and cellulose derivatives. Polym Rev 48:378–391

    Article  Google Scholar 

  62. Xu S, Zhang J, He A, Li J, Zhang H, Han CC (2008) Electrospinning of native cellulose from a nonvolatile solvent system. Polymer 49:2911–2917

    Article  Google Scholar 

  63. Quan S-L, Kang S-G, Chin I-J (2010) Characterization of cellulose fiber electrospun using ionic liquid. Cellulose 17:223–230

    Article  Google Scholar 

  64. Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7:415–418

    Article  Google Scholar 

  65. Rahatekar SS, Rasheed A, Jain R, Zammarano M, Koziol KK, Windle AH, Gilman JW, Kumar S (2009) Solution spinning of cellulose carbon nanotube composites using room temperature ionic liquids. Polymer 50:4577–4583

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Mecerreyes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Işık, M., Sardon, H., Mecerreyes, D. (2015). Ionic Liquid and Cellulose Technologies: Dissolution, Modification and Composite Preparation. In: Mecerreyes, D. (eds) Applications of Ionic Liquids in Polymer Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44903-5_6

Download citation

Publish with us

Policies and ethics