Skip to main content

Ionic Liquids and Polymeric Ionic Liquids as Stimuli-Responsive Functional Materials

  • Chapter
Applications of Ionic Liquids in Polymer Science and Technology

Abstract

The anion recognition-based stimuli responsiveness of ionic liquids (ILs) and polymerized ionic liquids (PILs) is presented in the context of various association structures formed by these functional materials, and their responsiveness is characterized by ordered Hofmeister series. Gels and gelation, critical solution temperatures, and diverse applications including dispersion phase transfer and osmotic sphere and osmotic brush stabilization are discussed and illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ohno H, Fukumoto K (2008) Progress in ionic liquids for electrochemical reaction matrices. Electrochemistry 76(1):16–23

    Google Scholar 

  2. Greaves TL, Drummond CJ (2008) Ionic liquids as amphiphile self-assembly media. Chem Soc Rev 37(8):1709–1726

    Google Scholar 

  3. Hui J, O’Hare B, Dong J, Arzhanstev S, Baker GA, Wishart JF, Benesi AJ, Maroncelli M (2008) Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethylsulfonyl)imide anion with various cations. J Phys Chem B 112(1):81–92

    Google Scholar 

  4. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8(8):621–629

    ADS  Google Scholar 

  5. Rios-Lombardia N, Busto E, Gotor-Fernandez V, Gotor V, Porcar R, Garcia-Verdugo E, Luis SV, Alfonso I, Garcia-Granda S, Menendez-Velazquez A (2010) From salts to ionic liquids by systematic structural modifications: a rational approach towards the efficient modular synthesis of enantiopure imidazolium salts. Chem Eur J 16(3):836–847

    Google Scholar 

  6. Franzol AC, Brondai D, Zapp E, Moccilini SK, Fernandes SC, Vieira IC, Dupont J (2011) Incorporation of ionic liquids in the construction of electrochemical sensors. Quimica Nova 34(6):1042–1050

    Google Scholar 

  7. Weiss DC, MacFarlane DR (2012) Computer-aided molecular design of ionic liquids: an overview. Aust J Chem 65(11):1478–1486

    Google Scholar 

  8. Greaves TL, Drummond CJ (2008) Solvent nanostructure, the solvophobic effect and amphiphile self-assembly in ionic liquids. Chem Soc Rev 42(3):1096–1120

    Google Scholar 

  9. Garcia R, Meccerreyes D (2013) Polymers with redox properties: materials for batteries, biosensors and more. Polym Chem 4(7):2206–2214

    Google Scholar 

  10. Bhargava BL, Balasubramanian S, Klein ML (2008) Modeling room temperature ionic liquids. Chem Commun 29:3339–3351

    Google Scholar 

  11. Bara JE, Carlisle TK, Gabriel CJ, Camper D, Finotello A, Gin DL, Noble RD (2009) Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind Eng Chem Res 48(60):2739–2751

    Google Scholar 

  12. Ahmed E, Ruck M (2011) Homo- and heteroatomic polycations of groups 15 and 16. Recent advances in synthesis and isolation using room temperature ionic liquids. Coord Chem Rev 256(23–24):2892–2903

    Google Scholar 

  13. Zhang L, Chen J, Lu JX, Wang SF, Chui Y (2013) Progress and development of capture for CO2 by ionic liquids. Asian J Chem 25(5):2355–2358

    Google Scholar 

  14. Marcilla R, Blazquez JA, Rogriguez J, Pomposo JA, Mecerreyes D (2004) Tuning the solubility of polymerized liquids by simple anion-exchange reactions. J Polym Sci A Polym Chem 42:208–212

    ADS  Google Scholar 

  15. Yan F, Texter J (2006) Surfactant ionic liquid-based microemulsions for polymerization. Chem Commun 42:2696–2698

    Google Scholar 

  16. Yan F, Texter J (2007) Solvent-reversible poration in ionic liquid copolymer. Angew Chem Int Ed 46:2440–2443

    Google Scholar 

  17. Yan F, Lu J, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Poly Sci 34:431–448

    Google Scholar 

  18. Green O, Grubjesic S, Lee S, Firestone MA (2009) The design of polymeric ionic liquids for the preparation of functional materials. J Macromol Sci C Polym Rev 49:339–360

    Google Scholar 

  19. Green MD, Long TE (2009) Designing imidazole-based ionic liquids and ionic liquid monomers for emerging technologies. Polym Rev 49:291–314

    Google Scholar 

  20. Chen H, Elabd YA (2009) Polymerized ionic liquids: solution properties and electrospinning. Macromolecules 42(9):3368–3373

    ADS  Google Scholar 

  21. Yuan J, Antonietti M (2011) Poly(ionic liquid)s: polymers expanding classical property profiles. Polymer 52(7):1469–1482

    Google Scholar 

  22. Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Poly Sci 36(12):1629–1649

    Google Scholar 

  23. Ye YS, Elabd YA (2011) Anion exchanged polymerized ionic liquids: high free volume single ion conductors. Polymer 53(5):1309–1317

    Google Scholar 

  24. Texter J (2012) Anion responsive imidazolium-based polymers. Macromol Rap Commun 33:1996–2014

    Google Scholar 

  25. Yuan J, Mecerreyes D, Antoniettie M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38(7):1009–1036

    Google Scholar 

  26. Texter J (2000) Supramolecular equilibria in microemulsions. Colloid Surf A Physicochem Aspects 167:115–122

    Google Scholar 

  27. Texter J (2001) Micelles. In: Moore JH, Spencer ND (eds) Encyclopedia of chemical physics and physical chemistry, volume III: applications. Institute of Physics Publishing, Philadelphia, pp 2285–2316

    Google Scholar 

  28. Qiu Z, Texter J (2004) Tuning the solubility of polymerized liquids by simple anion-exchange reactions. Curr Opin Colloid Interface Sci 42:208–212

    Google Scholar 

  29. Shi LJ, Zheng LQ (2012) Aggregation behavior of surface active imidazolium ionic liquids in ethylammonium nitrate: effect of alkyl chain length, cations, and counter-ions. J Phys Chem B. doi:10.1021/jp211338

    Google Scholar 

  30. Ding AF, Zha M, Zhang J, Wang SS (2007) Synthesis of a kind of geminal imidazolium ionic liquid with long aliphatic chains. Chin Chem Lett 18:48–50

    Google Scholar 

  31. Ding AF, Zha M, Zhang J, Wang SS (2007) Synthesis, characterization and properties of geminal imidazolium ionic liquids. Colloids Surf A Physicochem Eng Aspects 298:201–205

    Google Scholar 

  32. Łuczak J, Markiewicz M, Thöming J, Hupka J, Jungnickel C (2011) Influence of the Hofmeister anions on self-organization of 1-decyl-3-methylimidazolium chloride in aqueous solutions. J Colloid Interface Sci 362:415–422

    Google Scholar 

  33. England D, Tambe N, Texter J (2012) Stimuli-responsive nanolatexes – porating films. ACS Macro Lett 1:310–314

    Google Scholar 

  34. Alcade E, Dinares I, Mesquida N (2010) Imidazolium-based receptors. Top Heterocycl Chem 24:267–300

    Google Scholar 

  35. Alcade E, Mesquida N, Ibañez A, Dinares I (2012) A halide-for-anion swap using an anion-exchange resin (A(-) form) method: revisiting imidazolium-based anion receptors and sensors. Eur J Org Chem 298–304

    Google Scholar 

  36. Zhao J, Yan F, Chen Z-Z, Diao HB, Chu FQ, Yu AM, Lu JM (2009) Microemulsion polymerization of cationic pyrroles bearing an imidazolium-ionic liquid moiety. J Polym Sci A Polym Chem 47:746–753

    ADS  Google Scholar 

  37. El Seoud OA, Pires PAR, Abdel-Moghny T, Bastos EL (2007) Synthesis and micellar properties of surface-active ionic liquids: 1-Alkyl-3-methylimidazolium chlorides. J Colloid Interface Sci 313:296–304

    Google Scholar 

  38. Bara JE, Hatakeyama ES, Wiesenauer BR, Zeng X, Noble RD, Gin DL (2010) Thermotropic liquid crystal behaviour of Gemini imidazolium-based ionic amphiphiles. Liquid Crystals 37:1587–1599

    Google Scholar 

  39. Sunitha S, Reddy PS, Prasad RBN, Kanjital S (2011) Synthesis and evaluation of new imidazolium-based aromatic ether functionalized cationic mono and Gemini surfactants. Eur J Lipid Sci Technol 113:756–762

    Google Scholar 

  40. Ao MQ, Xu GY, Zhu YY, Bai Y (2008) Synthesis and properties of ionic liquid-type Gemini imidazolium surfactants. J Colloid Interface Sci 326:490–495

    Google Scholar 

  41. Bhadani A, Singh S (2011) Synthesis and properties of thioether spacer containing Gemini imidazolium surfactants. Langmuir 27:14033–14044

    Google Scholar 

  42. Bhadani A, Kataria H, Singh S (2011) Synthesis, characterization and comparative evaluation of phenoxy ring containing long chain Gemini imidazolium and pyridinium amphiphiles. J Colloid Interface Sci 361:33–41

    Google Scholar 

  43. Texter J, Arjunan Vasantha V, Crombez R, Maniglia R, Slater L, Mourey T (2012) Triblock copolymer based on poly(propylene oxide) and poly(1-[11-acryloylundecyl]-3-metyl-imidazolium bromide). Macromol Rap Commun 33:69–74

    Google Scholar 

  44. Seth D, Chakraborty A, Setua P, Sarkar N (2006) Interaction of ionic liquid with water in ternary microemulsions (triton X-100/water/1-butyl-3-methylimidazolium hexafluorophosphate) probed by solvent and rotational relaxation of coumarin 153 and coumarin 151. Langmuir 22:7768–7775

    Google Scholar 

  45. Gao Y, Li N, Zheng LQ, Zhao XY, Zhang SH, Han BX, Hou WG, Li GZ (2006) A cyclic voltammetric technique for the detection of micro-regions of bmimPF6/ Tween 20/H2O microemulsions and their performance characterization by UV–Vis spectroscopy. Green Chem 8:43–49

    Google Scholar 

  46. Friberg SE, Yin Q, Pavel F, Mackay RA, Holbrey JD, Seddon KR, Alkens PA (2000) Solubilization of an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate, in a surfactant–water system. J Dispers Sci Technol 21:185–197

    Google Scholar 

  47. Eastoe J, Gold S, Rogers SE, Paul A, Welton T, Heenan RK, Grillo I (2005) Ionic liquid-in-oil microemulsions. J Am Chem Soc 127:7302–7303

    Google Scholar 

  48. Gao Y, Li N, Zheng LQ, Zhao XY, Zhang J, Cao Q, Zhao MW, Li Z, Zhang GY (2007) The effect of water on the microstructure of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/benzene ionic liquid microemulsions. Chem Eur J 13:2661–2670

    Google Scholar 

  49. Gao Y, Li N, Zheng LQ, Bai XG, Yu L, Zhao XY, Zhang J, Zhao MW, Li Z (2007) Role of solubilized water in the reverse ionic liquid microemulsion of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/benzene. J Phys Chem B 111:2506–2513

    Google Scholar 

  50. Lade O, Co CC, Cotts P, Strey R, Kaler EW (2005) Microemulsion polymerization: phase behavior driven mechanistic changes. Colloid Polym Sci 283:905–916

    Google Scholar 

  51. Xu L, Chen W, Bickley JF, Steiner A, Xiao J (2000) Fluoroalkylated N-heterocyclic carbene complexes of palladium. J Organomet Chem 598:409–416

    Google Scholar 

  52. Yu SM, Yan F, Zhang XWS, You JB, Wu PY, Lu JM, Xu QF, Xia XW, Ma GL (2008) Polymerization of ionic liquid-based microemulsions: a versatile method for the synthesis of polymer electrolytes. Macromolecules 41:3389–3392

    ADS  Google Scholar 

  53. Bishop J, Mourey T, Texter J (1995) Adsorption of triblock copolymers on nanoparticulate pharmaceutical imaging agents. In: Sharma R (ed) Surfactant adsorption and surface solubilization. ACS symposium series, vol 615. ACS Books, Washington, DC, pp 205–216

    Google Scholar 

  54. Yuan J, Antonietti M (2011) Poly(ionic liquid) latexes prepared by dispersion polymerization of ionic liquid monomers. Macromolecules 44:744–750

    ADS  Google Scholar 

  55. Yuan JY, Sebastian S, Dreschler M, Müller AHE, Antonietti M (2011) Self-assembly of poly(ionic liquid)s: polymerization, mesostructure formation, and directional alignment in one step. J Am Chem Soc 133:17556–17559

    Google Scholar 

  56. Vijayakrishna K, Jewrajka SK, Ruiz A, Marcilla R, Pomposo JA, Mecerreyes D, Taton D, Gnanou Y (2008) Synthesis by RAFT and ionic responsiveness of double hydrophilic block copolymers on ionic liquid monomer units. Macromolecules 4:6299–6308

    ADS  Google Scholar 

  57. Vijayakrishna K, Mecerreyes D, Gnanou Y, Taton D (2009) Polymeric vesicles and micelles obtained by self-assembly of ionic b block copolymers triggered by anion or solvent exchange. Macromolecules 42:5167–5174

    ADS  Google Scholar 

  58. Carrasco PM, de Luzuriaga AR, Constantinou M, Georgoanos P, Rangou S, Avgeropoulos A, Zafeiropoulos NE, Grande H-J, Cabanero G, Mecerreyes D, Garcia I (2011) Influence of anion exchange in self-assembling of polymeric ionic liquid block copolymers. Macromolecules 44:4936–4941

    ADS  Google Scholar 

  59. Malmsten M, Lindman B (1992) Self-assembly in aqueous block copolymer solutions. Macromolecules 25:5440–5445

    ADS  Google Scholar 

  60. Yang Z, Pickard S, Deng NJ, Barlow RJ, Attwod D, Booth C (1994) Effect of block structure on the micellization and gelation of aqueous-solutions of copolymers of ethylene-oxide and butylene oxide. Macromolecules 27:2371–2379

    ADS  Google Scholar 

  61. Prud’homme RK, Wu G, Schneider DK (1996) Structure and rheology studies of poly(oxyethylene-oxypropylene-oxyethylene) aqueous solution. Langmuir 12:4651–4659

    Google Scholar 

  62. Wu CH, Liu TB, Chu BJ, Schneider DK, Graziano V (1997) Characterization of the PEO-PPO-PEO triblock copolymer and its application as a separation medium in capillary electrophoresis. Macromolecules 307:4574–4583

    ADS  Google Scholar 

  63. Xu Z, Choi JY, Yoon J (2011) Fluorescence sensing of dihydrogen phosphate and pyrophosphate using imidazolium anthracene derivatives. Bull Korean Chem Soc 32:1371–1374

    Google Scholar 

  64. Vickers MS, Martindale KS, Beer PD (2005) Imidazolium functionalised acyclic ruthenium(II) bipyridyl receptors for anion recognition and luminescent sensing. J Mater Chem Soc 15:2784–2790

    Google Scholar 

  65. Alcade E, Mesquida N, Ibañez A, Dinares I (2011) A halide-for-anion swap using an anion-exchange resin (A(-) form) method: revisiting imidazolium-based anion receptors and sensors. Eur J Org Chem 2:298–304

    Google Scholar 

  66. Chen X, Kang S, Kim MJ, Kim J, Kim YS, Kim H, Chi B, Kim S-J, Lee JY, Yoon J (2010) Thin-film formation of imidazolium-based conjugated polydiacetylenes and their application for sensing anionic surfactants. Angew Chem Int Ed 49:1422–1425

    Google Scholar 

  67. Marullo S, D’Anna F, Cascino M, Noto R (2013) Molecular “pincer” from a diimidazolium salt: a study of binding ability. J Org Chem 78:10203–1020869

    Google Scholar 

  68. Rostami A, Taylor MS (2012) Polymers for anion recognition and sensing. Macromol Rapid Commun 33:21–34

    Google Scholar 

  69. Ho HA, Leclerc M (2003) New colorimetric and fluorometric chemosensor based on a cationic polythiophene derivative for iodide-specific detection. J Am Chem Soc 125:4412–4413

    Google Scholar 

  70. Ihm H, Yun S, Kim HG, Kim JK, Kim KS (2002) Tripodal nitro-imidazolium receptor for anion binding driven by (C–H)(+)-X- hydrogen bonds. Org Lett 4:2897–2900

    Google Scholar 

  71. Dong ZY, Yang Y, Zhang LF, Xue YR, Feng MY, Gao GH (2012) Ionic liquids containing the urea moiety for recognition of halides and complex anions. Chin Sci Bull 57:473–478

    MATH  Google Scholar 

  72. Kondo SI (2011) Anion recognition by 2,2'-binaphthalene bearing imidazolium groups in MeCN. Supramol Chem 23:29–36

    Google Scholar 

  73. Xu Z, Singh NJ, Kim SK, Spring DR, Kim KS, Yoon J (2011) Induction-driven stabilization of the anion-pi interaction in electron-rich aromatics as the key to fluoride inclusion in imidazolium-cage receptors. Chem Eur J 17:1163–1170

    Google Scholar 

  74. Xu Z, Kim S, Lee K-H, Yoon J (2007) A highly selective fluorescent chemosensor for dihydrogen phosphate via unique excimer formation and PET mechanism. Tetrahedron Lett 48:3797–3800

    Google Scholar 

  75. Ahmed N, Shirinfar B, Geronimo I, Kim KS (2011) Fluorescent imidazolium-based cyclophane for detection of guanosine-5'-triphosphate and I- in aqueous solution of physiological pH. Org Lett 13:5476–5479

    Google Scholar 

  76. Texter J (2003) Polymer colloids in photonic materials. Comptes Rend Chimie 6:1425–1433

    Google Scholar 

  77. Texter J (2009) Templating hydrogels. Coll Polym Sci 287:313–321

    Google Scholar 

  78. Hu XB, Huang J, Zhang WX, Li MH, Tao CG, Li GT (2008) Photonic ionic liquids polymer for naked-eye detection of anions. Adv Mater 20:4074–4078

    Google Scholar 

  79. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Google Scholar 

  80. Garcia-Etxarri A, Aizpurua J, Molina-Aldareguia J, Molina-Aldareguia J, Marcilla R, Pomposo JA, Mecerreyes D (2010) Chemical sensing based on the plasmonic response of nanoparticle aggregation: anion sensing in nanoparticles stabilized by amino-functional ionic liquid. Front Phys China 5:330–336

    ADS  Google Scholar 

  81. Yan ZN, Pei YC, Fan J, Wang SQ, Wang JJ (2013) Selective electrodes for [PF6](-) and [BF4](-) anions based on the associates formed by ionic liquid and cationic dyes. Mater Sci Eng C Mater Biolog App 33:356–361

    Google Scholar 

  82. Gouroshetty R, Crabtree AM, Sanderson WM, Johnson RD (2011) Anion-selective electrodes based on ionic liquid membranes: effect of ionic liquid anion on observed response. Anal Bioanal Chem 400:3025–3033

    Google Scholar 

  83. Shvedene NV, Avramenko OA, Baulin VE, Tomilova LG, Pletnev IV (2011) Iodide-selective screen-printed electrodes based on low-melting ionic solids and metallated phthalocyanine. Electroanalysis 23:1067–1072

    Google Scholar 

  84. Shvedene NV, Rzhevskaia AV, Pletnev IV (2012) Ionic liquids based on quaternary phosphonium cation as active components of solid-state iodide selective electrode. Talanta 102:123–127

    Google Scholar 

  85. Qi HT, Zhang L, Yang LF, Yu P, Mao LQ (2013) Anion-exchange-based amperometric assay for heparin using polyimidazolium as synthetic receptor. Anal Chem 85:3439–3445

    Google Scholar 

  86. Chahar M, Upreti S, Pandey PS (2007) Anion recognition by bisimidazolium and bisbenzimidazolium cholapods. Tetrahedron 63:171–176

    Google Scholar 

  87. Rou B, Bar AK, Gole B, Mukherjee PS (2013) Fluorescent tris-Imidazolium sensors for picric acid explosive. J Org Chem 78:1306–1310

    Google Scholar 

  88. Dawn A, Shiraki T, Haraguchi S, Tamaru S, Shinkai S (2011) What kind of “soft materials” can we design from molecular gels? Chem An Asian J 6(2):266–282

    Google Scholar 

  89. Sugiyasu K, Fujita N, Shinkai S (2005) Design of novel composite materials by functional low molecular-weight organogels. J Syn Org Chem Japan 63(4):359–369

    Google Scholar 

  90. Wang YJ, Tang LM, Yu J (2009) Supramolecular hydrogel based on low-molecular-weight gelators: from structure to function. Prog Chem 21(6):1312–1324

    Google Scholar 

  91. Ahn S-K, Kasi RM, Kim S-C, Sharma N, Zhou Y (2008) Stimuli-responsive polymer gels. Soft Matter 4:1151–1157

    ADS  Google Scholar 

  92. Kim P, Zarzar LD, He X, Grinthal A, Aizenberg J (2011) Hydrogel-actuated integrated responsive systems (HAIRS): moving towards adaptive materials. Curr Opin Solid State Mater Sci 15:236–245

    ADS  Google Scholar 

  93. Diaz DD, Kuebeck D, Koopmans RJ (2011) Stimuli-responsive gels as reaction vessels and reusable catalysts. Chem Soc Rev 40:427–448

    Google Scholar 

  94. White EM, Yatvin J, Grubbs JB, Bilbrey JA, Locklin J (2013) Advances in smart materials: stimuli-responsive hydrogel thin films. J Polym Sci B Polym Phys 51(14):1084–1099

    ADS  Google Scholar 

  95. Kimizuka N, Nakashima T (2001) Spontaneous self-assembly of glycolipid bilayer membranes in sugarphilic ionic liquids and formation of ionogels. Langmuir 17:6759–6761

    Google Scholar 

  96. Ikeda A, Sonoda K, Ayabe M, Tamaru S, Nakashima T, Kimizuka N, Shinkai S (2001) Gelation of ionic liquids with a low molecular-weight gelator showing Tgel above 100 °C. Chem Lett 11:1154–1155

    Google Scholar 

  97. Kubo W, Kitamura T, Hanabusa K, Wada Y, Yanagida S (2002) Quasi-solid-state dye- sensitized solar cells using room temperature molten salts and a low molecular weight gelator. Chem Commun 38:374–375

    Google Scholar 

  98. Hanabusa K, Fukui H, Suzuki M, Shirai H (2005) Specialist gelator for ionic liquids. Langmuir 21:10383–10390

    Google Scholar 

  99. Wang P, Zakeeruddin SM, Comte P, Exnar I, Graetzel M (2003) Gelation of ionic liquid- based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J Am Chem Soc 125:1166–1167

    Google Scholar 

  100. Yang H, Yu CZ, Song QL, Xia YY, Li FY, Chen ZG, Li XH, Yi T, Huang CH (2006) High-temperature and long-term stable solid-state electrolyte for dye-sensitized solar cells by self-assembly. Chem Mater 18:5173–5177

    Google Scholar 

  101. Chen Z, Li F, Yang H, Yi T, Huang C (2007) A thermostable and long-term-stable ionic- liquid-based gel electrolyte for efficient dye-sensitized solar cells. Chem Phys Chem 8:1293–1297

    Google Scholar 

  102. Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300:2072–2074

    ADS  Google Scholar 

  103. Fukushima T, Aida T (2007) Ionic liquids for soft functional materials with carbon nanotubes. Chem Eur J 15:5048–5058

    Google Scholar 

  104. Zhang Y, Shen Y, Li J, Niu L, Dong S, Ivaska A (2005) Electrochemical functionalization of single-walled carbon nanotubes in large quantities at a room-temperature ionic liquid supported three-dimensional network electrode. Langmuir 21:4797–4800

    Google Scholar 

  105. Yu P, Yan J, Zhao H, Su L, Zhang J, Mao L (2008) Rational functionalization of carbon nanotube/ionic liquid bucky gel with dual tailor-made electrocatalysts for four- electron reduction of oxygen. J Phys Chem C 112:2177–2182

    Google Scholar 

  106. Ueki T, Watanabe M (2008) Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules 41:3739–3749

    ADS  Google Scholar 

  107. Ogihara W, Sun J, Forsyth M, MacFarlane DR, Yoshizawa M, Ohno H (2004) Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes. Electrochim Acta 49:1797–1801

    Google Scholar 

  108. Ueki T, Watanabe M (2006) Upper critical solution temperature behavior of poly(N- isopropylacrylamide) in an ionic liquid and preparation of thermo-sensitive nonvolatile gels. Chem Lett 35:964–965

    Google Scholar 

  109. Ueki T, Watanabe M (2007) Lower critical solution temperature behavior of linear polymers in ionic liquids and the corresponding volume phase transition of polymer gels. Langmuir 23:988–990

    Google Scholar 

  110. Gozdz AS, Schmutz CN, Tarascon JM (1994) US Patent No 5,296,318

    Google Scholar 

  111. Fuller J, Breda AC, Carlin RT (1997) Ionic liquid-polymer gel electrolytes. J Electrochem Soc 144:L67–L69

    Google Scholar 

  112. Fuller J, Breda AC, Carlin RT (1998) Ionic liquid-polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids. J Electroanal Chem 459:29–34

    Google Scholar 

  113. Carlin RT, Fuller J (1997) Ionic liquid-polymer gel catalytic membrane. Chem Commun 33:1345–1346

    Google Scholar 

  114. Wang P, Zakeeruddin SM, Exnar I, Gratzel M (2002) High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem Commun 38:2972–2973

    Google Scholar 

  115. Bansal D, Cassel F, Croce F, Hendrickson M, Plichta E, Salomon M (2005) Conductivities and transport properties of gelled electrolytes with and without an ionic liquid for Li and Li-ion batteries. J Phys Chem B 109:4492–4496

    Google Scholar 

  116. Yeon SH, Kim KS, Choi S, Cha JH, Lee H (2005) Characterization of PVdF(HFP) gel electrolytes based on 1-(2-hydroxyethyl)-3-methyl imidazolium ionic liquids. J Phys Chem B 109:17928–17935

    Google Scholar 

  117. Fukushima T, Asaka K, Kosaka A, Aida T (2005) Fully plastic actuator through layer-by- layer casting with ionic-liquid-based bucky gel. Angew Chem Int Ed 44:2410–2413

    Google Scholar 

  118. Tiyapiboonchaiya C, Macfarlane DR, Sun J, Forsyth M (2002) Polymer-in-ionic-liquid electrolytes. Macromol Chem Phys 203:1906–1911

    Google Scholar 

  119. Singh B, Sekhon SS (2005) Polymer electrolytes based on room temperature ionic liquid: 2,3-Dimethyl-1-octylimidazolium triflate. J Phys Chem B 109:16539–16543

    Google Scholar 

  120. Lewandowski A, Swiderska A (2004) New composite solid electrolytes based on a polymer and ionic liquids. Solid State Ion 169:21–24

    Google Scholar 

  121. Kawauchi T, Kumaki J, Okoshi K, Yashima E (2005) Stereocomplex formation of isotactic and syndiotactic poly(methyl methacrylate)s in ionic liquids leading to thermoreversible ion gels. Macromolecules 38:9155–9160

    ADS  Google Scholar 

  122. Lu X, Zhou J, Zhao Y, Qiu Y, Li J (2008) Room temperature ionic liquid based polystyrene nanofibers with superhydrophobicity and conductivity produced by electrospinning. Chem Mater 20:3420–3424

    Google Scholar 

  123. He Y, Boswell PG, Bühlmann P, Lodge TP (2007) Ion gels by self-assembly of a triblock copolymer in an ionic liquid. J Phys Chem B 111:4645–4652

    Google Scholar 

  124. He Y, Lodge TP (2008) Thermoreversible ion gels with tunable melting temperatures from triblock and pentablock copolymers. Macromolecules 41:167–174

    ADS  Google Scholar 

  125. Noda A, Watanabe M (2000) Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochim Acta 45:1265–1270

    Google Scholar 

  126. Ueki T, Karino T, Kobayashi Y, Shibayama M, Watanabe M (2007) Difference in lower critical solution temperature behavior between random copolymers and a homopolymer having solvatophilic and solvatophobic structures in an ionic liquid. J Phys Chem B 111:4750–4754

    Google Scholar 

  127. Simone PM, Lodge TP (2008) Lyotropic phase behavior of polybutadiene-poly(ethylene oxide) diblock copolymers in ionic liquids. Macromolecules 41:1753–1759

    ADS  Google Scholar 

  128. Matsumoto K, Endo T (2008) Confinement of ionic liquid by networked polymers based on multifunctional epoxy resins. Macromolecules 41:6981–6986

    ADS  Google Scholar 

  129. Lee J, Panzer MJ, He Y, Lodge TP, Frisbie CD (2007) Ion gel gated polymer thin-film transistors. J Am Chem Soc 129:4532–4533

    Google Scholar 

  130. Cho JH, Lee J, Kim B, He Y, Lodge TP, Frisbie CD (2008) High capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv Mater 20:686–690

    Google Scholar 

  131. Klingshirn MA, Spear SK, Subramanian R, Holbrey JD, Huddleston JG, Rogers RD (2004) Gelation of ionic liquids using a cross-linked poly(ethylene glycol) gel matrix. Chem Mater 16:3091–3097

    Google Scholar 

  132. Susan MA, Kaneko T, Noda A, Watanabe M (2005) Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc 127:4976–4993

    Google Scholar 

  133. Hirao M, Ito K, Ohno H (2000) Preparation and polymerization of new organic molten salts: N-alkylimidazolium salt derivatives. Electrochim Acta 45:1291–1294

    Google Scholar 

  134. Ohno H, Ito K (1998) Room-temperature molten salt polymers as a matrix for fast ion conduction. Chem Lett 27:751–752

    Google Scholar 

  135. Yoshizawa M, Ogihara W, Ohno H (2002) Novel polymer electrolytes prepared by copolymerization of ionic liquid monomers. Polym Adv Technol 13:589–594

    Google Scholar 

  136. Yoshizawa M, Hirao M, Ito K, Ohno H (2001) Ion conduction in zwitterionic-type molten salts and their polymers. J Mater Chem 11:1057–1062

    Google Scholar 

  137. Ogihara W, Washiro S, Nakajima H, Ohno H (2006) Effect of cation structure on the electrochemical and thermal properties of ion conductive polymers obtained from polymerizable ionic liquids. Electrochim Acta 51:2614–2619

    Google Scholar 

  138. Nakajima H, Ohno H (2005) Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymer 46:11499–11504

    Google Scholar 

  139. Ohno H (2007) Design of ion conductive polymers based on ionic liquids. Macromol Symp 249:551–556

    Google Scholar 

  140. Muldoon MJ, Gordon CM (2004) Synthesis of gel-type polymer beads from ionic liquid monomers. J Polym Sci Part A Polym Chem 42:3865–3869

    ADS  Google Scholar 

  141. Yoshio M, Kagata T, Hoshino K, Mukai T, Ohno H, Kato T (2006) One-dimensional ion- conductive polymer films: alignment and fixation of ionic channels formed by self-organization of polymerizable columnar liquid crystals. J Am Chem Soc 128:5570–5577

    Google Scholar 

  142. Batra D, Hay DNT, Firestone MA (2007) Formation of a biomimetic, liquid-crystalline hydrogel by self-assembly and polymerization of an ionic liquid. Chem Mater 19:4423–4431

    Google Scholar 

  143. Batra D, Seifert S, Firestone MA (2007) The effect of cation structure on the mesophase architecture of self-assembled and polymerized imidazolium-based ionic liquids. Macromol Chem Phys 208:1416–1427

    Google Scholar 

  144. Batra D, Seifert S, Varela LM, Liu ACY, Firestone MA (2007) Solvent-mediated plasmon tuning in a gold-nanoparticle–poly(ionic liquid) composite. Adv Funct Mater 17:1279–1287

    Google Scholar 

  145. Sharma N, Lakhman RK, Zhou Y, Kasi RM (2013) Physical gels of [BMIM][BF4] by N-tert-butylacrylamide/ethylene oxide based triblock copolymer self-assembly: synthesis, thermomechanical, and conducting properties. J Apply Polym Sci. doi:10.1002/app.38629

    Google Scholar 

  146. England D, Yan F, Texter J (2013) Porating anion-responsive copolymeric gels. Langmuir 29:12013–12024

    Google Scholar 

  147. Gu H, Texter J (2014) Anion and solvent responsive copolymeric gels – morphology, annealing, and surfactant stimuli. Polymer 55:3378–3384

    Google Scholar 

  148. Page KA, England D, Texter J (2012) Capturing nanoscale structure in network gels by microemulsion polymerization. ACS Macro Lett 1:1398–1402

    Google Scholar 

  149. Marcilla R, Blazquez JA, Fernandez R, Grande H, Pomposo JA, Mecerreyes D (2005) Synthesis of novel polycations using the chemistry of ionic liquids. Macromol Chem Phys 206:299–304

    Google Scholar 

  150. Marcilla R, Curri ML, Cozzoli PD, Martínez MT, Loinaz I, Grande H, Pomposo JA, Mecerreyes D (2006) Nano-objects on a round trip from water to organics in a polymeric ionic liquid vehicle. Small 2:507–512

    Google Scholar 

  151. Texter J (2014) Graphene dispersion in liquids and its visible extinction. In: Aliofkhazre A, Milne O, Mitura G (eds) Handbook of graphene science. CRC Press, Boca Raton (in press)

    Google Scholar 

  152. Soll S, Anonietti M, Yuan JY (2012) Double stimuli-responsive copolymer stabilizers for multiwalled carbon nanotubes. ACS Macro Lett 1:84–87

    Google Scholar 

  153. Tauer K, Weber N, Texter J (2009) Core-shell particle interconversion with di-stimuli-responsive diblock copolymers. Chem Commun 45:6065–6067

    Google Scholar 

  154. Texter J, Tauer K, Weber N, Masic A (2010) Amphiphilic ionic liquid-based block copolymers – stimuli responsive new materials. Polym Preprints 51(1):355–356

    Google Scholar 

  155. Weber N, Texter J, Tauer K (2011) The synthesis of special block copolymers using a reaction calorimeter. Macromol Symp 302:224–234

    Google Scholar 

  156. Yuan J, Schlaad H, Giordano C, Antonietti M (2011) Double hydrophilic diblock copolymers containing a poly(ionic liquid) segment: controlled synthesis, solution property, and application as carbon precursor. Eur Polym J 47:772–781

    Google Scholar 

  157. Antonietti M, Shen Y, Nakanishi T, Manuelian M, Campbell R, Gwee L, Elabd Y, Tambe N, Crombez R, Texter J (2010) Single-wall carbon nanotube latexes. ACS Appl Mater Interfaces 2:649–653

    Google Scholar 

  158. Giordano C, Yang W, Lindemann A, Crombez R, Texter J (2011) Waterborne WC nanodispersions. Colloids Surf A 374:84–87

    Google Scholar 

  159. Texter J, Arjunan Vasantha V, Bian K, Ma X, Slater L, Mourey T, Slater G (2011) Stimuli-responsive triblock copolymers – synthesis, characterization, and application. In: Coughlin B, Theato P, Kilbinger A (eds) Non-conventional functional block copolymers. ACS symposium series, vol 1066. American Chemical Society, Washington, DC, pp 117–130

    Google Scholar 

  160. Texter J, Crombez R, Ma X, Zhao L, Perez-Caballero F, Titirici MM, Antonietti M (2011) Waterborne nanocarbon dispersions for electronic and fuel applications. Prepr Symp Am Chem Soc Div Fuel Chem 56:388–389

    Google Scholar 

  161. Texter J (2011) Nanoparticle dispersions with ionic liquid-based stabilizers. US Patent application publication, US 2011/0233458 A1, 29 Sept

    Google Scholar 

  162. Texter J, Ager D, Arjunan Vasantha V, Crombez R, England D, Ma X, Maniglia R, Tambe N (2012) Advanced nanocarbon materials facilitated by novel stimuli-responsive stabilizers. Chem Lett 41:1377–1379

    Google Scholar 

  163. England D (2008) MS thesis, Eastern Michigan University. http://commons.emich.edu/theses/159. Downloaded 14 July 2012

  164. Ma X, MD A, Kunitake M, Crombez R, Texter J, Slater L, Mourey T (2011) Stimuli-responsive poly(1-[11-acryloylundecyl]-3-methyl-imidazolium bromide) – dewetting and nanoparticle condensation phenomena. Langmuir 27:7148–7157

    Google Scholar 

  165. Ma X, Crombez R, Md A, Kunitake M, Slater L, Mourey T, Texter J (2011) Polymer dewetting via stimuli-responsive structural relaxation – contact angle analysis. Chem Commun 47:10356–10358

    Google Scholar 

  166. Hayashi S, Saha S, Hamaguchi HO (2006) A new class of magnetic fluids: bmim[FeCl4] and nbmim[FeCl4] ionic liquids. IEEE Trans Magn 42:12–14

    ADS  Google Scholar 

  167. Dobbelin M, Jovanovski V, Llarena I, Claros Marfil LJ, Cabanero G, Rodriguez J, Mecerreyes D (2011) Synthesis of paramagnetic polymers using ionic liquid chemistry. Polym Chem 2:1275–1278

    Google Scholar 

  168. Klee A, Prevost S, Kunz W, Schweins R, Klefer K, Gradzieski M (2012) Magnetic microemulsions based on magnetic ionic liquids. Phys Chem Chem Phys 14:15355–15360

    Google Scholar 

  169. Brown P, Bushmelev A, Butts CP, Cheng J, Eastoe J, Grillo I, Heenan RK, Schmidt AM (2012) Magnetic control over liquid surface properties with responsive surfactants. Angew Chem Int Ed 51:2414–2416

    Google Scholar 

  170. Brown P, Bushmelev A, Butts CP, Eloi JC, Grillo I, Baker PJ, Schmidt AM, Eastoe J (2013) Properties of new magnetic surfactants. Langmuir 29:3246–3251

    Google Scholar 

  171. Brown P, Butts CP, Eastoe J, Hernndez EP, de Araujo Machadob FL, de Oliveira RJ (2013) Dication magnetic ionic liquids with tuneable heteroanions. Chem Commun 49:2765–2767

    Google Scholar 

  172. Rahman MT, Barikbin Z, Badruddoza AZM, Doyle PS, Khan SA (2013) Monodisperse polymeric ionic liquid microgel beads with multiple chemically switchable functionalities. Langmuir 29:9535–9543

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Texter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Texter, J. (2015). Ionic Liquids and Polymeric Ionic Liquids as Stimuli-Responsive Functional Materials. In: Mecerreyes, D. (eds) Applications of Ionic Liquids in Polymer Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44903-5_5

Download citation

Publish with us

Policies and ethics