Skip to main content

Poly(Ionic Liquid)s as Ionic Liquid-Based Innovative Polyelectrolytes

  • Chapter
Applications of Ionic Liquids in Polymer Science and Technology

Abstract

Poly(ionic liquid) or polymerized ionic liquids (PILs) have been recently recognized as innovative polyelectrolytes attracting rapidly increasing interest in a multitude of fields of polymer and materials science. The chemical structures, the synthetic strategies, and the versatile applications of PILs will be discussed here to provide an overview of this newly emerging topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Green MD, Long TE (2009) Designing imidazole-based ionic liquids and ionic liquid monomers for emerging technologies. Polym Rev 49:291–314

    Article  Google Scholar 

  2. Mecerreyes D (2011) Broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36:1629–1648

    Article  Google Scholar 

  3. Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448

    Article  Google Scholar 

  4. Green O, Grubjesic S, Lee S, Firestone MA (2009) The design of polymeric ionic liquids for the preparation of functional materials. Polym Rev 49:339–360

    Article  Google Scholar 

  5. Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38:1009–1036

    Article  Google Scholar 

  6. Ohno H, Yoshizawa M, Ogihara W (2004) Development of new class of ion conductive polymers based on ionic liquids. Electrochim Acta 50:255–261

    Article  Google Scholar 

  7. Hirao M, Ito K, Ohno H (2000) Preparation and polymerization of new organic molten salts: N-alkylimidazolium salt derivatives. Electrochim Acta 45:1291–1294

    Article  Google Scholar 

  8. Ohno H, Ito K (1998) Room-temperature molten salt polymers as a matrix for fast ion conduction. Chem Lett 6:751–752

    Article  Google Scholar 

  9. Washiro S, Yoshizawa M, Nakajima H, Ohno H (2004) Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids. Polymer 45:1577–1582

    Article  Google Scholar 

  10. Boyere C, Favrelle A, Leonard AF, Boury F, Jerome C, Debuigne A (2013) Macroporous poly(ionic liquid) and poly(acrylamide) monoliths from CO2-in-water emulsion templates stabilized by sugar-based surfactants. J Mater Chem A 1:8479–8487

    Article  Google Scholar 

  11. Ogihara W, Washiro S, Nakajima H, Ohno H (2006) Effect of cation structure on electrochemical and thermal properties of ion conductive polymers obtained from polymerizable ionic liquids. Electrochim Acta 51:2614–2619

    Article  Google Scholar 

  12. Huang J, Tao C, An Q, Zhang W, Wu Y, Li X, Shen D, Li G (2010) 3D-ordered macroporous poly(ionic liquid) films as multifunctional materials. Chem Commun 46:967–969

    Article  Google Scholar 

  13. Yan F, Texter J (2006) Surfactant ionic liquid-based microemulsions for polymerisation. Chem Commun 2696–2699

    Google Scholar 

  14. Ye Y, Elabd YA (2011) Relative chemical stability of imidazolium-based alkaline anion exchange polymerized ionic liquid. Macromolecules 44:8494–8503

    Article  ADS  Google Scholar 

  15. Grubjesic S, Seifert S, Firestone MA (2009) Cytoskeleton mimetic reinforcement of a self-assembled N, N′-dialkylimidazolium ionic liquid monomer by copolymerization. Macromolecules 42:5461–5470

    Article  ADS  Google Scholar 

  16. Ricks-Laskoski HL, Snow AW (2006) Synthesis and electric field actuation of an ionic polymer. J Am Chem Soc 128:12402–12403

    Article  Google Scholar 

  17. Ohno H (2007) Design of ion conductive polymers based on ionic liquids. Macromol Symp 249–250:551–556

    Article  Google Scholar 

  18. Yoshizawa M, Ogihara W, Ohno H (2002) Novel polymer electrolytes prepared by copolymerization of ionic liquid monomers. Polym Adv Technol 13:589–594

    Article  Google Scholar 

  19. Kadokawa JI, Murakami MA, Kaneko Y (2008) Facile method for preparation of composites composed of cellulose and a polystyrene-type PIL using a polymerizable ionic liquids. Compos Sci Technol 68:493–498

    Article  Google Scholar 

  20. Nakajima H, Ohno H (2005) Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymer 46:11499–11504

    Article  Google Scholar 

  21. Bao Y, Lantz AW, Crank JA, Huang J, Armstrong DW (2008) The use of cationic surfactants and ionic liquids in the detection of microbial contamination by capillary electrophoresis. Electrophoresis 29:2587–2592

    Article  Google Scholar 

  22. Anderson JL, Armstrong DW (2005) Immobilized ionic liquids as high-selectivity/high-temperature/high-stability gas chromatography stationary phases. Anal Chem 77:6453–6462

    Article  Google Scholar 

  23. Zhao Q, Zhang P, Antonietti M, Yuan J (2012) Complex with spontaneous micro-/mesoporosity: template-free synthesis and application as catalyst support. J Am Chem Soc 134:11852–11855

    Article  Google Scholar 

  24. Bezdushna E, Ritter H (2009) Microwave and ionic liquids: inverse temperature dependence of viscosity in aqueous medium of grafted copolymers. Macromol React Eng 3:516–521

    Article  Google Scholar 

  25. Chen H, Choi JH, Salas-de la Cruz D, Winey KI, Elabd YA (2009) Polymerized ionic liquids: the effect of random copolymer composition on ion conduction. Macromolecules 42:4809–4816

    Article  Google Scholar 

  26. Matsumoto K, Talukdar B, Endo T (2011) Methacrylate-based ionic liquid: radical polymerization/copolymerization with methyl methacrylate and evaluation of molecular weight of the obtained homopolymers. Polym Bull 2:199–210

    Article  Google Scholar 

  27. Ding S, Tang H, Radosz M, Shen Y (2004) Atom transfer radical polymerization of ionic liquid 2-(1-butylimidazolium-3-yl)ethyl methacrylate tetrafluoroborate. J Polym Sci Part A: Polym Chem 42:5794–5801

    Article  ADS  Google Scholar 

  28. Tang H, Tang J, Ding S, Radosz M, Shen Y (2005) Atom transfer radical polymerization of styrenic ionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids. J Polym Sci Part A: Polym Chem 43:1432–1443

    Article  ADS  Google Scholar 

  29. Cheng S, Beyer FL, Mather BD, Moore RB, Long TE (2011) Phosphonium-containing ABA triblock copolymers: controlled free radical polymerization of phosphonium ionic liquids. Macromolecules 44:6509–6517

    Article  Google Scholar 

  30. Vijayakrishna K, Jewrajka SK, Ruiz A, Marcilla R, Pomposo JA, Mecerreyes D, Taton D, Gnanou Y (2008) Synthesis by RAFT and ionic responsiveness of double hydrophilic block copolymers based on ionic liquid monomer units. Macromolecules 41:6299–6308

    Article  ADS  Google Scholar 

  31. Mori H, Yahagi M, Endo T (2009) RAFT polymerization of N-vinylimidazolium salts and synthesis of thermoresponsive ionic liquid block copolymers. Macromolecules 42:8082–8092

    Article  Google Scholar 

  32. Detrembleur C, Debuigne A, Hurtgen M, Jérôme C, Pinaud J, Fèvre M, Coupillaud P, Vignolle J, Taton D (2011) Synthesis of 1-vinyl-3-ethylimidazolium-based ionic liquid (co)polymers by cobalt-mediated radical polymerization. Macromolecules 44:6397–6404

    Article  Google Scholar 

  33. Lee S, Becht GA, Lee B, Burns CT, Firestone MA (2010) Electropolymerization of a bifunctional ionic liquid monomer yields an electroactive liquid-crystalline polymer. Adv Funct Mater 20:2063–2070

    Article  Google Scholar 

  34. Stathatos E, Jovanovski V, Orel B, Jerman I, Lianos P (2007) Dye-sensitized solar cells made by using a polysilsesquioxane polymeric ionic fluid as redox electrolyte. J Phys Chem C 111:6528–6532

    Article  Google Scholar 

  35. Matsumi N, Sugai K, Miyake M, Ohno H (2006) Polymerized ionic liquids via hydroboration polymerization as single ion conductive polymer electrolytes. Macromolecules 39:6924–6927

    Article  ADS  Google Scholar 

  36. Vygodskii YS, Shaplov AS, Lozinskaya EI, Lyssenko KA, Golovanov DG, Malyshkina IA, Gavrilova ND, Buchmeiser MR (2008) Conductive polymer electrolytes derived from poly(norbornene)s with pendant ionic imidazolium moieties. Macromol Chem Phys 209:40–51

    Article  Google Scholar 

  37. Yoshizawa M, Ohno H (1999) Molecular brush having molten salt domain for fast ion conduction. Chem Lett 28:889–890

    Article  Google Scholar 

  38. Gu H, England D, Yan F, Texter J (2008) New high charge density polymers for printable electronics, sensors, batteries, and fuel cells. Paper presented at nanoelectronics conference 2008. INEC 2008. 2nd IEEE international, 24–27 Mar 2008

    Google Scholar 

  39. Bellayer S, Gilman J, Eidelman N, Bourbigot S, Flambard X, Fox D, De Long H, Trulove P (2005) Preparation of homogeneously dispersed multiwalled carbon nanotube/polystyrene nanocomposites via melt extrusion using trialkyl imidazolium compatibilizer. Adv Funct Mater 15:910–916

    Article  Google Scholar 

  40. Marcilla R, Curri M, Cozzoli P, Martínez M, Loinaz I, Grande H, Pomposo J, Mecerreyes D (2006) Nano-objects on a round trip from water to organics in a polymeric ionic liquid vehicle. Small 2:507–512

    Article  Google Scholar 

  41. Kim T, Lee H, Kim J, Suh KS (2010) Ultrasonic assisted nano-dimensional self-assembly of poly-3-hexylthiophene for organic photovoltaic cells. ACS Nano 4:2160–2166

    Article  Google Scholar 

  42. Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300:2072–2074

    Article  ADS  Google Scholar 

  43. Fukushima T, Kosaka A, Yamamoto Y, Aimiya T, Notazawa S, Takigawa T, Inabe T, Aida T (2006) Dramatic effect of dispersed carbon nanotubes on the mechanical and electroconductive properties of polymers derived from ionic liquids. Small 2:554–560

    Article  Google Scholar 

  44. Antonietti M, Shen Y, Nakanishi T, Manuelian M, Campbell R, Gwee L, Elabd YA, Tambe N, Crombez R, Texter J (2010) Single-wall carbon nanotube latexes. ACS Appl Mater Interfaces 2:649–653

    Article  Google Scholar 

  45. Kim TY, Lee TH, Kim JE, Kasi RM, Sung CSP, Suh KS (2008) Organic solvent dispersion of poly(3,4-ethylenedioxythiophene) with the use of polymeric ionic liquid. J Polym Sci Part A: Polym Chem 46:6872–6879

    Article  ADS  Google Scholar 

  46. Marcilla R, Ochoteco E, Pozo-Gonzalo C, Grande H, Pomposo JA, Mecerreyes D (2005) New organic dispersions of conducting polymers using polymeric ionic liquids as stabilizers. Macromol Rapid Commun 26:1122–1126

    Article  Google Scholar 

  47. Kim T, Tung TT, Lee T, Kim J, Suh K (2010) Poly(ionic liquid)-mediated hybridization of single-walled carbon nanotubes and conducting polymers. Chem – Asian J 5:256–260

    Article  Google Scholar 

  48. Giordano C, Yang W, Lindemann A, Crombez R, Texter J (2011) Waterborne WC nanodispersions. Colloids Surf A: Physicochem Eng Aspects 374:84–87

    Article  Google Scholar 

  49. Wu B, Hu D, Kuang Y, Liu B, Zhang X, Chen J (2009) Functionalization of carbon nanotubes by an ionic-liquid polymer: dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol. Angew Chem Inter Ed 48:4751–4754

    Article  Google Scholar 

  50. Tang J, Radosz M, Shen Y (2007) Poly(ionic liquid)s as optically transparent microwave-absorbing materials. Macromolecules 41:493–496

    Article  ADS  Google Scholar 

  51. Tang J, Tang H, Sun W, Plancher H, Radosz M, Shen Y (2005) Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. Chem Commun 3325–3327

    Google Scholar 

  52. Blasig A, Tang J, Hu X, Shen Y, Radosz M (2007) Magnetic suspension balance study of carbon dioxide solubility in ammonium-based polymerized ionic liquids: poly(p-vinylbenzyltrimethyl ammonium tetrafluoroborate) and poly([2-(methacryloyloxy)ethyl] trimethyl ammonium tetrafluoroborate). Fluid Phase Equilibria 25:75–80

    Article  Google Scholar 

  53. Mineo PG, Livoti L, Giannetto M, Gulino A, Lo Schiavo S, Cardiano P (2009) Very fast CO2 response and hydrophobic properties of novel poly(ionic liquid)s. J Mater Chem 19:8861–8870

    Article  Google Scholar 

  54. Tang J, Shen Y, Radosz M, Sun W (2009) Isothermal carbon dioxide sorption in poly(ionic liquid)s. Ind Eng Chem Res 48:9113–9118

    Article  Google Scholar 

  55. Wilke A, Yuan J, Antonietti M, Weber J (2012) Enhanced carbon dioxide adsorption by a mesoporous poly(ionic liquid). ACS Macro Lett 1:1028–1031

    Article  Google Scholar 

  56. Xiong Y-B, Wang H, Wang Y-J, Wang R-M (2012) Novel imidazolium-based poly(ionic liquid)s: preparation, characterization, and absorption of CO2. Polym Adv Technol 23:835–840

    Article  Google Scholar 

  57. Cardiano P, Mineo PG, Neri F, Lo Schiavo S, Piraino P (2008) A new application of ionic liquids: hydrophobic properties of tetraalkylammonium-based poly(ionic liquid)s. J Mater Chem 18:1253–1260

    Article  Google Scholar 

  58. Supasitmongkol S, Styring P (2010) High CO2 solubility in ionic liquids and a tetraalkylammonium-based poly(ionic liquid). Energy Environ Sci 3:1961–1972

    Article  Google Scholar 

  59. Bara JE, Gabriel CJ, Hatakeyama ES, Carlisle TK, Lessmann S, Noble RD, Gin DL (2008) Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents. J Membr Sci 321:3–7

    Article  Google Scholar 

  60. Bara JE, Noble RD, Gin DL (2009) Effect of “free” cation substituent on gas separation performance of polymer-room-temperature ionic liquid composite membranes. Ind Eng Chem Res 48:4607–4610

    Article  Google Scholar 

  61. Carlisle TK, Wiesenauer EF, Nicodemus GD, Gin DL, Noble RD (2012) Ideal CO2/light gas separation performance of poly(vinylimidazolium) membranes and poly(vinylimidazolium)-ionic liquid composite films. Ind Eng Chem Res 52:1023–1032

    Article  Google Scholar 

  62. Tome LC, Mecerreyes D, Freire CSR, Rebelo LPN, Marrucho IM (2013) Pyrrolidinium-based polymeric ionic liquid materials: new perspectives for CO2 separation membranes. J Membr Sci 428:260–266

    Article  Google Scholar 

  63. Qiu H, Mallik AK, Takafuji M, Liu X, Jiang S, Ihara H (2012) Enhancement of molecular shape selectivity by in situ anion-exchange in poly(octadecylimidazolium) silica column. J Chromatogr A 1232:116–122

    Article  Google Scholar 

  64. Qi M, Armstrong D (2007) Dicationic ionic liquid stationary phase for GC-MS analysis of volatile compounds in herbal plants. Anal Bioanal Chem 388:889–899

    Article  Google Scholar 

  65. Yuan J, Schlaad H, Giordano C, Antonietti M (2011) Double hydrophilic diblock copolymers containing a poly(ionic liquid) segment: controlled synthesis, solution property, and application as carbon precursor. Eur Polym J 47:772–781

    Article  Google Scholar 

  66. Pan C, Qiu L, Peng Y, Yan F (2012) Facile synthesis of nitrogen-doped carbon–Pt nanoparticle hybrids via carbonization of poly([Bvim][Br]-co-acrylonitrile) for electrocatalytic oxidation of methanol. J Mater Chem 22:13578–13584

    Article  Google Scholar 

  67. Yuan J, Giordano C, Antonietti M (2010) Ionic liquid monomers and polymers as precursors of highly conductive, mesoporous, graphitic carbon nanostructures. Chem Mater 22:5003–5012

    Article  Google Scholar 

  68. Yuan J, Marquez AG, Reinacher J, Giordano C, Janek J, Antonietti M (2011) Nitrogen-doped carbon fibers and membranes by carbonization of electrospun poly(ionic liquid)s. Polym Chem 2:1654–1657

    Article  Google Scholar 

  69. Bo X, Bai J, Ju J, Guo L (2011) Highly dispersed Pt nanoparticles supported on poly(ionic liquids) derived hollow carbon spheres for methanol oxidation. J Power Sources 196:8360–8365

    Article  Google Scholar 

  70. Xiong Y, Liu J, Wang Y, Wang H, Wang R (2012) One-step synthesis of thermosensitive nanogels based on highly cross-linked poly(ionic liquid)s. Angew Chem Inter Ed 51:9114–9118

    Article  Google Scholar 

  71. Xiong Y, Wang Y, Wang H, Wang R, Cui Z (2012) Novel one-step synthesis to cross-linked polymeric nanoparticles as highly active and selective catalysts for cycloaddition of CO2 to epoxides. J Appl Polym Sci 123:1486–1493

    Article  Google Scholar 

  72. Xiong Y, Wang Y, Wang H, Wang R (2011) A facile one-step synthesis to ionic liquid-based cross-linked polymeric nanoparticles and their application for CO2 fixation. Polym Chem 2:2306–2315

    Article  MathSciNet  Google Scholar 

  73. Jeon EH, Nguyen MD, Chung CI, Kim YJ, Kim HS, Cheong M, Lee JS (2007) Polymer-supported methylselenite for the oxidative carbonylation of aniline. Appl Catal A: Gen 332:65–69

    Article  Google Scholar 

  74. Pourjavadi A, Hosseini SH, Doulabi M, Fakoorpoor SM, Seidi F (2012) Multi-layer functionalized poly(ionic liquid) coated magnetic nanoparticles: highly recoverable and magnetically separable brønsted acid catalyst. ACS Catal 2:1259–1266

    Article  Google Scholar 

  75. Biboum RN, Doungmene F, Keita B, Oliveira P, Nadjo L, Lepoittevin B, Roger P, Brisset F, Mialane P, Dolbecq A, Mbomekalle IM, Pichon C, Yin P, Liu T, Contant R (2012) Poly(ionic liquid) and macrocyclic polyoxometalate ionic self-assemblies: new water-insoluble and visible light photosensitive catalysts. J Mater Chem 22:319–323

    Article  Google Scholar 

  76. Mu XD, Meng JQ, Li ZC, Kou Y (2005) Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids: long lifetime nanocluster catalysts for benzene hydrogenation. J Am Chem Soc 127:9694–9695

    Article  Google Scholar 

  77. Zhang Y, Zhao L, Patra PK, Hu D, Ying JY (2009) Colloidal poly-imidazolium salts and derivatives. Nano Today 4:13–20

    Article  Google Scholar 

  78. Pinaud J, Vignolle J, Gnanou Y, Taton D (2011) Poly(N-heterocyclic-carbene)s and their CO2 adducts as recyclable polymer-supported organocatalysts for benzoin condensation and transesterification reactions. Macromolecules 44:1900–1908

    Article  ADS  Google Scholar 

  79. Coupillaud P, Pinaud J, Guidolin N, Vignolle J, Fèvre M, Veaudecrenne E, Mecerreyes D, Taton D (2013) Poly(ionic liquid)s based on imidazolium hydrogen carbonate monomer units as recyclable polymer-supported N-heterocyclic carbenes: use in organocatalysis. J Polym Sci Part A: Polym Chem 51:4530–4540

    Google Scholar 

  80. Deavin OI, Murphy S, Ong AL, Poynton SD, Zeng R, Herman H, Varcoe JR (2012) Anion-exchange membranes for alkaline polymer electrolyte fuel cells: comparison of pendent benzyltrimethylammonium- and benzylmethylimidazolium-head-groups. Energy Environ Sci 5:8584–8597

    Article  Google Scholar 

  81. Lin B, Qiu L, Lu J, Yan F (2010) Cross-linked alkaline ionic liquid-based polymer electrolytes for alkaline fuel cell applications. Chem Mater 22:6718–6725

    Article  Google Scholar 

  82. Qiu B, Lin B, Qiu L, Yan F (2012) Alkaline imidazolium- and quaternary ammonium-functionalized anion exchange membranes for alkaline fuel cell applications. J Mater Chem 22:1040–1045

    Article  Google Scholar 

  83. Luo Y, Guo J, Wang C, Chu D (2011) An acrylate-polymer-based electrolyte membrane for alkaline fuel cell applications. ChemSusChem 4:1557–1560

    Article  Google Scholar 

  84. Li W, Fang J, Lv M, Chen C, Chi X, Yang Y, Zhang Y (2012) Novel anion exchange membranes based on polymerizable imidazolium salt for alkaline fuel cell applications. J Mater Chem 21:11340–11346

    Article  Google Scholar 

  85. Chen X, Zhao J, Zhang J, Qiu L, Xu D, Zhang H, Han X, Sun B, Fu G, Zhang Y, Yan F (2012) Bis-imidazolium based poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. J Mater Chem 22:18018–18024

    Article  Google Scholar 

  86. Azaceta E, Marcilla R, Sanchez-Diaz A, Palomares E, Mecerreyes D (2010) Synthesis and characterization of poly(1-vinyl-3-alkylimidazolium) iodide polymers for quasi-solid electrolytes in dye sensitized solar cells. Electrochim Acta 56:42–46

    Article  Google Scholar 

  87. Appetecchi GB, Kim GT, Montanino M, Carewska M, Marcilla R, Mecerreyes D, Meatza I (2010) Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. J Power Sources 195:3668–3675

    Article  Google Scholar 

  88. Kim JK, Niedzicki L, Scheers J, Shin CR, Lim DH, Wieczorek W, Johansson P, Ahn JH, Matic A, Jacobsson P (2013) Characterization of N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide-based polymer electrolytes for high safety lithium batteries. J Power Sources 224:93–98

    Article  Google Scholar 

  89. Yan F, Texter J (2007) Solvent-reversible poration in ionic liquid copolymers. Angew Chem Inter Ed 119:2492–2495

    Article  Google Scholar 

  90. Zhang Y, Chen X, Lan J, You J, Chen L (2009) Synthesis and biological applications of imidazolium-based polymerized ionic liquid as a gene delivery vector. Chem Biol Drug Des 74:282–288

    Article  Google Scholar 

  91. Hemp ST, Allen MH, Green MD, Long TE (2011) Phosphonium-containing polyelectrolytes for nonviral gene delivery. Biomacromolecules 13:231–238

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the Max Planck Society and the RENAISSANCE project (Grant agreement no.: 289347) of the Marie Curie ITN. J.Y. especially thanks the PILs group in the Max Planck Institute of Colloids and Interfaces in Potsdam for their creative research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Antonietti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yuan, J., Antonietti, M. (2015). Poly(Ionic Liquid)s as Ionic Liquid-Based Innovative Polyelectrolytes. In: Mecerreyes, D. (eds) Applications of Ionic Liquids in Polymer Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44903-5_3

Download citation

Publish with us

Policies and ethics