Skip to main content

Deep Eutectic Solvents Playing Multiple Roles in the Synthesis of Porous Carbon Materials

  • Chapter
Applications of Ionic Liquids in Polymer Science and Technology

Abstract

This chapter discusses the use of deep eutectic solvent-assisted syntheses which allow the preparation of both chemically and structurally modified carbon monoliths suitable as electrodes in supercapacitor cells. Either carbons or carbon–carbon nanocomposites exhibiting a hierarchical structure and a tailored composition (either nitrogen or phosphorus doped) could be attained by the use of different mixtures of deep eutectic solvents (DESs). Carbons prepared from DESs are also suitable for CO2 adsorption and CO2–N2 and/or CO2–CH4 separation processes. These features, besides the low-cost character of our carbons, open interesting perspectives for their application as sorbents in separation technologies for CO2 low-pressure post-combustion processes and natural gas upgrading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reichardt C (2003) Solvents and solvent effects in organic chemistry, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  2. Li C-P, Du M (2011) Role of solvents in coordination supramolecular systems. Chem Commun 47:5958–5972

    Google Scholar 

  3. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun (1):70–71

    Google Scholar 

  4. Abbott AP, Harris RC, Ryder KS (2007) Application of hole theory to define ionic liquids by their transport properties. J Phys Chem B 111:4910–4913

    Google Scholar 

  5. Abbott AP, Capper G, Gray S (2006) Design of improved deep eutectic solvents using hole theory. Chem Phys Chem 7:803–806

    Google Scholar 

  6. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147

    Google Scholar 

  7. Imperato G, Eibler E, Niedermaier J, König B (2005) Low-melting sugar–urea–salt mixtures as solvents for Diels–Alder reactions. Chem Commun 5(9):1170–1172

    Google Scholar 

  8. Imperato G, Hoger S, Lenoir D, König B (2006) Low melting sugar-urea-salt mixtures as solvents for organic reactions – estimation of polarity and use in catalysis. Green Chem 8:1051–1055

    Google Scholar 

  9. Imperato G, Vasold R, König B (2006) Stille reactions with tetraalkylstannanes and phenyltrialkylstannanes in low melting sugar-urea-salt mixtures. Adv Synth Catal 348:2243–2247

    Google Scholar 

  10. Choi YH, Spronsen JV, Dai Y, Verberne M, Hollmann F, Arends IWCE, Witkamp G-J, Verpoorte R (2011) Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol 156:1701–1705

    Google Scholar 

  11. Daia Y, Spronsenb JV, Witkampb G-J, Verpoortea R, Choi YH (2013) Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta 766:61–68

    Google Scholar 

  12. Francisco M, Bruinhorst AVD, Kroon MC (2013) Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angew Chem 52:3074–3085

    Google Scholar 

  13. Gore S, Chinthapally K, Baskaran S, König B (2009) Organic reactions in low melting mixtures based on carbohydrates and l-carnitine – a comparison. Green Chem 11:848–854

    Google Scholar 

  14. Gore S, Chinthapally K, Baskaran S, König B (2009) Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures. Green Chem 11:1948–1954

    Google Scholar 

  15. Gore S, Chinthapally K, Baskaran S, König B (2011) Efficient preparation of β-d-glucosyl and β-d-mannosyl ureas and other N-glucosides in carbohydrate melts. Green Chem 13:156–161

    Google Scholar 

  16. Gore S, Baskaran S, König B (2011) Efficient synthesis of 3,4-dihydropyrimidin-2-ones in low melting tartaric acid–urea mixtures. Green Chem 13:1009–1013

    Google Scholar 

  17. Gore S, Baskaran S, König B (2012) Fischer indole synthesis in low melting mixtures. Organic Lett 14:4568–4571

    Google Scholar 

  18. Gore S, Chinthapally K, Baskaran S, König B (2013) Synthesis of substituted hydantoins in low melting mixtures. Chem Commun 49:5052–5054

    Google Scholar 

  19. Zhang Z-H, Zhang X-N, Mo L-P, Li Y-X, Ma F-P (2012) Catalyst-free synthesis of quinazoline derivatives using low melting sugar–urea–salt mixture as a solvent. Green Chem 14:1502–1506

    Google Scholar 

  20. Abbott AP, Cullis PM, Gibson MJ, Harris RC, Raven E (2007) Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem 9:868–872

    Google Scholar 

  21. Oliveira FS, Pereiro AB, Rebelo LPN, Marrucho IM (2013) Deep eutectic solvents as extraction media for azeotropic mixtures. Green Chem 15:1326–1330

    Google Scholar 

  22. Abbott AP, Capper G, Davies DL, Rasheed RK (2005) Selective extraction of metals from mixed oxide matrixes using choline-based ionic liquids. Inorg Chem 44:6497–6499

    Google Scholar 

  23. Bia W, Tianb M, Row KH (2013) Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. J Chromatogr A 1285:22–30

    Google Scholar 

  24. Francisco M, Bruinhorst AVD, Kroon MC (2012) New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem 14:2153–2157

    Google Scholar 

  25. Hu S, Zhang Z, Zhou Y, Han B, Fan H, Li W, Song J, Xie Y (2008) Conversion of fructose to 5-hydroxymethylfurfural using ionic liquids prepared from renewable materials. Green Chem 10:1280–1283

    Google Scholar 

  26. Hu S, Zhang Z, Zhou Y, Song J, Fan H, Han B (2009) Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids. Green Chem 11:873–877

    Google Scholar 

  27. Vigier KDO, Benguerba A, Barrault J, Jérôme F (2012) Conversion of fructose and insulin to 5-hydroxymethylfurfural in sustainable betaine hydrochloride-based media. Green Chem 14:285–289

    Google Scholar 

  28. Abbott AP, Bell TJ, Handa S, Stoddart B (2006) Cationic functionalisation of cellulose using a choline based ionic liquid analogue. Green Chem 8:784–786

    Google Scholar 

  29. Abbott AP, Ballantyne A, Conde JP, Ryder KS, Wise WR (2012) Salt modified starch: sustainable, recyclable plastics. Green Chem 14:1302–1037

    Google Scholar 

  30. Francisco M, Bruinhorst AVD, Zubeira LF, Petersaand CJ, Kroon MC (2013) A new low transition temperature mixture (LTTM) formed by choline chloride + lactic acid: characterization as solvent for CO2 capture. Fluid Phase Equilibr 340:77–84

    Google Scholar 

  31. Leron RB, Li M-H (2013) Solubility of carbon dioxide in a choline chloride–ethylene glycol based deep eutectic solvent. Thermochim Acta 551:14–19

    ADS  Google Scholar 

  32. Gutiérrez MC, Mateo CR, Ferrer ML, Del Monte F (2009) Freeze-drying of aqueous solutions of deep eutectic solvents: a suitable approach to deep eutectic suspensions of self-assembled structures. Langmuir 25:5509–5515

    Google Scholar 

  33. Gorke JT, Srienc F, Kazlauskas RJ (2008) Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem Commun 1235–1237

    Google Scholar 

  34. Nardecchia S, Gutiérrez MC, Ferrer ML, Alonso M, Lopez I, Rodriguez-Cabello JC, Del Monte F (2012) Phase behaviour of elastin-like synthetic recombinamers in deep eutectic solvents. Biomacromolecules 13:2029–2036

    Google Scholar 

  35. Esquembre R, Sanz JM, Wall JG, Del Monte F, Mateo CR, Ferrer MJ (2013) Thermal unfolding and refolding of lysozyme in deep eutectic solvents and their aqueous dilutions. Phys Chem Chem Phys 15:11248–11256

    Google Scholar 

  36. Lindberg D, Revenga DLFM, Widersten M (2010) Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis. J Biotechnol 147:169–171

    Google Scholar 

  37. Gutiérrez MC, Ferrer ML, Yuste L, Rojo F, Del Monte F (2010) Bacteria incorporation in deep eutectic solvents via freeze-drying. Angew Chem 49:2158–2162

    Google Scholar 

  38. Parnham ER, Drylie EA, Wheatley PS, Slawin AMZ, Morris RE (2006) Ionothermal materials synthesis using unstable deep-eutectic solvents as template-delivery agents. Angew Chem Int Ed 45:4962–4966

    Google Scholar 

  39. Sheu C-Y, Lee S-F, Lii K-H (2006) Ionic liquid of choline chloride/malonic acid as a solvent in the synthesis of open-framework iron oxalatophosphates. Inorg Chem 45:1891–1893

    Google Scholar 

  40. Martins AC, Fernandez-Felisbino R, Ruotolo LAM (2012) Ionothermal synthesis of aluminophosphates used for ion exchange: influence of choline chloride/urea ratio. Micropor Mesopor Mater 149:55–59

    Google Scholar 

  41. Drylie EA, Wragg DS, Parnham ER, Wheatley PS, Slawin AMZ, Warren JE, Morris RE (2007) Ionothermal synthesis of unusual choline-templated cobalt aluminophosphates. Angew Chem Int Ed 46:7839–7843

    Google Scholar 

  42. Liao J-H, Wu P-C, Bai Y-H (2005) Eutectic mixture of choline chloride/urea as a green solvent in synthesis of a coordination polymer: [Zn(O3PCH2CO2)] · NH4. Inorg Chem Commun 8:390–392

    Google Scholar 

  43. Tsao C-P, Sheu C-Y, Nguyen N, Lii K-H (2006) Ionothermal synthesis of metal oxalatophosphonates with a three-dimensional framework structure: Na2M3(C2O4)3(CH3PO3H)2 (M = FeII and MnII). Inorg Chem 45:6361–6364

    Google Scholar 

  44. Wang S-M, Chen W-L, Wang E-B, Li Y-G, Feng X-J, Liu L (2010) Three new polyoxometalate-based hybrids prepared from choline chloride/urea deep eutectic mixture at room temperature. Inorg Chem Commun 13:972–975

    Google Scholar 

  45. Cooper ER, Andrews CD, Wheatley PS, Webb PB, Wormald P, Morris RE (2004) Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 430:1012–1016

    ADS  Google Scholar 

  46. Zhang J, Wu T, Chen SM, Chen PY, Bu X (2009) Versatile structure-directing roles of deep-eutectic solvents and their implication in the generation of porosity and open metal sites for gas storage. Chem Int Ed 48:3486–3490

    Google Scholar 

  47. Parnham ER, Morris RE (2007) Ionothermal synthesis of zeolites, metal–organic frameworks, and inorganic–organic hybrids. Acc Chem Res 40:1005–1013

    Google Scholar 

  48. Gorke J, Srienc F, Kazlauskas R (2010) Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol Bioprocess Eng 15:40–53

    Google Scholar 

  49. Imperato G, König B, Chiappe C (2007) Ionic green solvents from renewable resources. Eur J Org Chem 2007(7):1049–1058

    Google Scholar 

  50. Ruß C, König B (2012) Low melting mixtures in organic synthesis – an alternative to ionic liquids? Green Chem 14:2969–2982

    Google Scholar 

  51. Gu Y (2012) Multicomponent reactions in unconventional solvents: state of the art. Green Chem 14:2091–2128

    Google Scholar 

  52. Francisco M, Bruinhorst AVD, Kroon MC (2013) Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angew Chem Int Ed 52:3074–3085

    Google Scholar 

  53. Zhang Q, Vigier KDO, Royer S, Jerome F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 14:7108–7146

    Google Scholar 

  54. Carriazo D, Serrano MC, Gutierrez MC, Ferrer ML, Del Monte F (2012) Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem Soc Rev 41:4996–5014

    Google Scholar 

  55. Del Monte F, Carriazo D, Serrano MC, Gutierrez MC, Ferrer ML (2013) Deep eutectic solvents in polymerizations: a greener alternative to conventional syntheses. ChemSusChem 7:999–1009

    Google Scholar 

  56. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227

    ADS  Google Scholar 

  57. Taguchi A, Smatt J-H, Lindén M (2003) Carbon monoliths possessing a hierarchical, fully interconnected porosity. Adv Mater 15:1209–1211

    Google Scholar 

  58. Al-Muhtaseb SA, Ritter JA (2003) Preparation and properties of resorcinol–formaldehyde organic and carbon gels. Adv Mater 15:101–114

    Google Scholar 

  59. Huang Y, Cai H, Feng D, Gu D, Deng Y, Tu B, Wang H, Webley PA, Zhao D (2008) One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chem Commun 23:2641–2643

    Google Scholar 

  60. Gutiérrez MC, Picó F, Rubio F, Amarilla JM, Palomares FJ, Ferrer ML, Del Monte F, Rojo JM (2009) PPO15-PEO22-PPO15 block copolymer assisted synthesis of monolithic macro- and microporous carbon aerogels exhibiting high conductivity and remarkable capacitance. J Mater Chem 19:773–780

    Google Scholar 

  61. Zhuang X, Wan Y, Feng C, Shen Y, Zhao D (2009) Highly efficient adsorption of bulky dye molecules in wastewater on ordered mesoporous carbons. Chem Mater 21:706–716

    Google Scholar 

  62. Wu Z, Webley PA, Zhao D (2010) Comprehensive study of pore evolution, mesostructural stability, and simultaneous surface functionalization of ordered mesoporous carbon (FDU-15) by wet oxidation as a promising adsorbent. Langmuir 26:10277–10286

    Google Scholar 

  63. Carriazo D, Picó F, Gutiérrez MC, Rubio F, Rojo JM, Del Monte F (2010) Block-copolymer assisted synthesis of hierarchical carbon monoliths suitable as supercapacitor electrodes. J Mater Chem 20:773–780

    Google Scholar 

  64. Carriazo D, Gutiérrez MC, Ferrer ML, Del Monte F (2010) Resorcinol-based deep eutectic solvents as both carbonaceous precursors and templating agents in the synthesis of hierarchical porous carbon monoliths. Chem Mater 22:6146–6152

    Google Scholar 

  65. Patiño J, Gutiérrez MC, Carriazo D, Ania CO, Parra JL, Ferrer ML, Del Monte F (2012) Deep eutectic assisted synthesis of carbon adsorbents highly suitable for low-pressure separation of CO2–CH4 gas mixtures. Energy Environ Sci 5:8699–8707

    Google Scholar 

  66. Gutiérrez MC, Carriazo D, Tamayo A, Jiménez R, Picó F, Rojo JM, Ferrer ML, Del Monte F (2011) Deep eutectic solvents assisted synthesis of hierarchical carbon electrodes exhibiting capacitance retention at high current densities. Chem-A Eur J 17:10553–10537

    Google Scholar 

  67. Gutiérrez MC, Carriazo D, Ania CO, Parra JL, Ferrer ML, Del Monte F (2011) Deep eutectic solvents as both precursors and structure directing agents in the synthesis of nitrogen doped hierarchical carbons highly suitable for CO2 capture. Energy Environ Sci 4:4201–4210

    Google Scholar 

  68. Carriazo D, Gutierrez MC, Picó F, Rojo JM, Fierro JLG, Ferrer ML, Del Monte F (2012) Phosphate-functionalized carbon monoliths from deep eutectic solvents and their use as monolithic electrodes in supercapacitors. ChemSusChem 5:1405–1409

    Google Scholar 

  69. Conway BE (1999) Electrochemical capacitors. Scientific fundamentals and technological applications. Kluwer, New York

    Google Scholar 

  70. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9:1774–1785

    Google Scholar 

  71. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760

    ADS  Google Scholar 

  72. Rolison DR (2003) Catalytic nanoarchitectures–the importance of nothing and the unimportance of periodicity. Science 299:1698

    ADS  Google Scholar 

  73. Pröbstle H, Schmitt C, Fricke J (2002) Button cell supercapacitors with monolithic carbon aerogels. J Power Sources 105:189

    Google Scholar 

  74. Min H-S, Park BY, Taherabadi L, Wang C, Yeh Y, Zaouk R, Madou MJ, Dunn B (2008) Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery. J Power Sources 178:795

    Google Scholar 

  75. Raymundo-Pinero E, Leroux F, Béguin F (2006) A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv Mater 18:1877

    Google Scholar 

  76. Wu D, Fu R, Dresselhaus MS, Dresselhaus G (2006) Fabrication and nano-structure control of carbon aerogels via a microemulsion-templated sol–gel polymerization method. Carbon 44:675–681

    Google Scholar 

  77. Hulicova-Jurcakova D, Puziy AM, Poddubnaya OI, Suarez-García F, Tascon JMD, Lu G-Q (2009) Highly stable performance of supercapacitors from phosphorus-enriched carbons. J Am Chem Soc 131:5026–5027

    Google Scholar 

  78. Worsley MA, Kucheyev SO, Kuntz JD, Hamza AV, Satcher JH Jr, Baumann TF (2009) Stiff and electrically conductive composites of carbon nanotube aerogels and polymers. J Mater Chem 19:3370–3372

    Google Scholar 

  79. Tao Y, Noguchi D, Yang C-M, Kanoh H, Tanaka H, Yudasaka M, Iijima S, Kaneko K (2007) Conductive and mesoporous single-wall carbon nanohorn/organic aerogel composites. Langmuir 23:9155–9157

    Google Scholar 

  80. Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH Jr, Baumann TF (2010) Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc 132:14067–14069

    Google Scholar 

  81. Worsley MA, Satcher JH Jr, Baumann TF (2008) Synthesis and characterization of monolithic carbon aerogel nanocomposites containing double-walled carbon nanotubes. Langmuir 24:9763–9766

    Google Scholar 

  82. Wang Q, Luo J, Zhong Z, Borgna A (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4:42–55

    MATH  Google Scholar 

  83. Wahby A, Ramos-Fernandez JM, Martinez-Escandell M, Sepulveda-Escribano A, Silvestre-Albero J, Rodriguez-Reinoso F (2010) High-surface-area carbon molecular sieves for selective CO2 adsorption. ChemSusChem 3:974–981

    Google Scholar 

  84. Sevilla M, Fuertes AB (2011) Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci 4:1765–1771

    Google Scholar 

  85. Sjostrom S, Krutka H (2010) Evaluation of solid sorbents as a retrofit technology for CO2 capture. Fuel 89:1298–1306

    Google Scholar 

  86. Radosz M, Hu X, Krutkramelis K, Shen Y (2008) Flue-gas carbon capture on carbonaceous sorbents: toward a low-cost multifunctional carbon filter for “Green” energy producers. Ind Eng Chem Res 47:3783–3794

    Google Scholar 

  87. Kapteijn F, Moulijn JA, Matzner S, Boechm H-P (1999) The development of nitrogen functionality in model chars during gasification in CO2 and O2. Carbon 37:1143–1150

    Google Scholar 

  88. Perez-Cadenas M, Moreno-Castilla C, Carrasco-Marin F, Perez-Cadenas AF (2009) Surface chemistry, porous texture, and morphology of N-doped carbon xerogels. Langmuir 25:466–470

    Google Scholar 

  89. Seredych M, Hulicova-Jurcakova D, Lu GQ, Bandosz TJ (2008) Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46:1475–1488

    Google Scholar 

  90. Hao G-P, Li W-C, Qian D, Lu A-H (2010) Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv Mater 22:853–885

    Google Scholar 

  91. Myers AL, Prausnitz JM (1965) Thermodynamics of mixed-gas adsorption. AIChE J 11:121–127

    Google Scholar 

  92. Jensen CRC, Seaton NA (1996) An isotherm equation for adsorption to high pressures in microporous adsorbents. Langmuir 12:2866–2867

    Google Scholar 

  93. Hao GP, Li WC, Qian D, Wang GH, Zhang WP, Hang T, Wang AQ, Schüth F, Bongard HJ, Lu AH (2011) Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. J Am Chem Soc 133:11378–11388

    Google Scholar 

  94. Jin Y, Hawkins SC, Huynh CP, Su S (2013) Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture. Energy Environ Sci 6:2591–2596

    Google Scholar 

  95. Sircar S, Golden TC, Rao MB (1996) Activated carbon for gas separation and storage. Carbon 34:1–12

    Google Scholar 

  96. Saha D, Bao ZB, Jia F, Deng SG (2010) Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and Zeolite 5A. Environ Sci Technol 44:1820–1826

    ADS  Google Scholar 

  97. Chen H, Yu H, Tang Y, Pan M, Yang G, Peng F, Wang H, Yang J (2008) Adsorption separation of carbon dioxide, methane, and nitrogen on Hβ and Na-exchanged β-zeolite. J Natural Gas Chem 17:391–396

    Google Scholar 

  98. Wang B, Furukawa H, O’Keeffe M, Yaghi OM (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453:207–212

    ADS  Google Scholar 

  99. Chen H, Yu H, Tang Y, Pan M, Yang G, Peng F, Wang H, Yang J (2008) Adsorption separation of carbon dioxide, methane, and nitrogen on Hβ and Na-exchanged β-zeolite. J Nat Gas Chem 17:391–396

    Google Scholar 

  100. Zhang Z, Xian S, Xi H, Wang H, Li Z (2011) Improvement of CO2 adsorption on ZIF-8 crystals modified by enhancing basicity of surface. Chem Eng Sci 66:4878–4888

    Google Scholar 

  101. Zhao Y, Zhao L, Yao KX, Yang Y, Zhang Q, Han Y (2012) Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture. J Mater Chem 22:19726–19731

    Google Scholar 

  102. Zhao Y, Liu X, Yao KX, Zhao L, Han Y (2012) Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon. Chem Mater 24:4725–4734

    Google Scholar 

  103. Ben T, Li Y, Zhu L, Zhang D, Cao D, Xiang Z, Yao X, Qiu S (2012) Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF). Energy Environ Sci 5:8370–8376

    Google Scholar 

  104. Lu W, Yuan D, Sculley J, Zhao D, Krishna R, Zhou HC (2011) Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J Am Chem Soc 133:18126–18129

    Google Scholar 

  105. Zhu Y, Long H, Zhang W (2013) Imine-linked porous polymer frameworks with high small gas (H2, CO2, CH4, C2H2) uptake and CO2/N2 selectivity. Chem Mater 25:1630–1635

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco del Monte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carriazo, D., Serrano, M.C., Gutiérrez, M.C., Ferrer, M.L., del Monte, F. (2015). Deep Eutectic Solvents Playing Multiple Roles in the Synthesis of Porous Carbon Materials. In: Mecerreyes, D. (eds) Applications of Ionic Liquids in Polymer Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44903-5_2

Download citation

Publish with us

Policies and ethics