Skip to main content

Abstract

Due to their unique yet tunable properties, “ionic liquids” are widely used as solvent and/or catalysts in many organic reactions. From the past two decades, there are increasing literature reports on the usage of ionic liquids (ILs) even in the polymerization chemistry as solvent, cosolvent, initiator, catalyst, or metal-complexing ligand. IL-mediated polymerization offers faster rates, higher molecular weight polymers, good yields, easy separation of products, and recovery and reuse of catalyst over conventional organic solvent-mediated polymerization process. In this chapter, we discussed various ILs (literature reported) that were employed as solvents and/or catalysts in different kinds of polymerization reactions and their advantages, influence on polymer properties, recovery, and polymerization kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hong K, Zhang H, Mays JW, Visser AE, Brazel CS, Holbrey JD, Reichert WM, Rogers RD (2002) Conventional free radical polymerization in room temperature ionic liquids: a green approach to commodity polymers with practical advantages. Chem Commun 13:1368–1369

    Google Scholar 

  2. Harrisson S, Mackenzie SR, Haddleton DM (2002) Unprecedented solvent-induced acceleration of free-radical propagation of methyl methacrylate in ionic liquids. Chem Commun 23:2850–2851

    Google Scholar 

  3. Harrisson S, Mackenzie S, Haddleton DM (2002) Pulsed laser polymerization of methyl methacrylate in ionic liquids. Polym Prepr (USA) 43(2):883–884

    Google Scholar 

  4. Zhang H, Hong K, Mays JW (2002) Synthesis of block copolymers of styrene and methyl methacrylate by conventional free radical polymerization in room temperature ionic liquids. Macromolecules 35(15):5738–5741

    ADS  Google Scholar 

  5. Benton MG, Brazel CS (2004) An investigation into the degree and rate of polymerization of poly(methyl methacrylate) in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Polym Int 53(8):1113–1117

    Google Scholar 

  6. Cheng L, Zhang Y, Zhao T, Wang H (2004) Free radical polymerization of acrylonitrile in green ionic liquids. Macromol Symp 216(1):9–16

    Google Scholar 

  7. Strehmel V, Laschewsky A, Wetzel H, Görnitz E (2006) Free radical polymerization of N-butyl methacrylate in ionic liquids. Macromolecules 39(3):923–930

    ADS  Google Scholar 

  8. Vygodskii YS, Mel’nik OA, Lozinskaya EI, Shaplov AS, Malyshkina IA, Gavrilova ND, Lyssenko KA, Antipin MY, Golovanov DG, Korlyukov AA, Ignat’ev N, Welz-Biermann U (2007) The influence of ionic liquid’s nature on free radical polymerization of vinyl monomers and ionic conductivity of the obtained polymeric materials. Polym Adv Technol 18(1):50–63

    Google Scholar 

  9. Schmidt-Naake G, Schmalfuß A, Woecht I (2008) Free radical polymerization in ionic liquids – influence of the IL-concentration and temperature. Chem Eng Res Des 86(7):765–774

    Google Scholar 

  10. Jeličić A, Beuermann S, García N (2009) Influence of ionic liquid structure on the propagation kinetics of methyl methacrylate. Macromolecules 42(14):5062–5072

    ADS  Google Scholar 

  11. Woecht I, Schmidt-Naake G, Beuermann S, Buback M, García N (2008) Propagation kinetics of free-radical polymerizations in ionic liquids. J Polym Sci Part A: Polym Chem 46(4):1460–1469

    ADS  Google Scholar 

  12. Barth J, Buback M, Schmidt-Naake G, Woecht I (2009) Termination kinetics of free-radical polymerization in ionic liquids. Polymer 50(24):5708–5712

    Google Scholar 

  13. Li J, Zhang J, Liu Z (2006) Bimodal molecular weight distribution of poly(styrene-co-acrylonitrile) formed by conventional free-radical copolymerization of acrylonitrile and styrene in room temperature ionic liquids. J Polym Sci Part A: Polym Chem 44(15):4420–4427

    ADS  MathSciNet  Google Scholar 

  14. Thurecht KJ, Gooden PN, Goel S, Tuck C, Licence P, Irvine DJ (2008) Free-radical polymerization in ionic liquids: the case for a protected radical. Macromolecules 41(8):2814–2820

    ADS  Google Scholar 

  15. Strehmel V, Wetzel H, Laschewsky A, Moldenhauer E, Klein T (2008) Influence of imidazolium-based ionic liquids on the synthesis of amphiphilic copolymers based on N-butylmethacrylate and a zwitterionic methacrylate. Polym Adv Technol 19(10):1383–1390

    Google Scholar 

  16. Ueda J, Yamaguchi H, Shirai K, Yamauchi T, Tsubokawa N (2008) Radical polymerization of vinyl monomers in the presence of carbon black initiated by 2,2′-azobisisobutyronitrile and benzoyl peroxide in ionic liquid. J Appl Polym Sci 107(5):3300–3305

    Google Scholar 

  17. Wu X, Qiu J, Liu P, Sakai E, Lei L (2013) Polystyrene grafted carbon black synthesis via in situ solution radical polymerization in ionic liquid. J Polym Res 20(6):1–7

    Google Scholar 

  18. Carmichael AJ, Haddleton DM, Bon SAF, Seddon KR (2000) Copper(I) mediated living radical polymerisation in an ionic liquid. Chem Commun 14:1237–1238

    Google Scholar 

  19. Cui G, Li J, Liu Z, Dou J (2010) Organostibine-mediated controlled/living radical polymerization of methyl methacrylate and styrene in ionic liquids. Macromol Chem Phys 211(11):1222–1228

    Google Scholar 

  20. Maria S, Biedroń T, Poli R, Kubisa P (2007) Atom transfer radical polymerization of methyl acrylate with molybdenum halides as catalysts in an ionic liquid. J Appl Polym Sci 105(1):278–281

    Google Scholar 

  21. Xie M, Kong Y, Han H, Shi J, Ding L, Song C, Zhang Y (2008) Amphiphilic ABA triblock copolymers via combination of ROMP and ATRP in ionic liquid: synthesis, characterization, and self-assembly. React Funct Polym 68(12):1601–1608

    Google Scholar 

  22. Zhao Y-L, Zhang J-M, Jiang J, Chen C-F, Xi F (2002) Atom transfer radical copolymerization of N-hexylmaleimide and styrene in an ionic liquid. J Polym Sci Part A: Polym Chem 40(20):3360–3366

    ADS  Google Scholar 

  23. Nett SK, Kircher G, Gutmann JS (2009) PMMA brushes prepared in an ionic liquid. Macromol Chem Phys 210(11):971–976

    Google Scholar 

  24. Zhang H, Zhang Y, Liu W, Wang H (2008) Kinetic study of atom transfer radical polymerization of methyl methacrylate in ionic liquids. J Appl Polym Sci 110(1):244–252

    Google Scholar 

  25. Biedroń T, Kubisa P (2001) Atom-transfer radical polymerization of acrylates in an ionic liquid. Macromol Rapid Commun 22(15):1237–1242

    Google Scholar 

  26. Biedroń T, Kubisa P (2002) Atom transfer radical polymerization of acrylates in an ionic liquid: synthesis of block copolymers. J Polym Sci Part A: Polym Chem 40(16):2799–2809

    ADS  Google Scholar 

  27. Sarbu T, Matyjaszewski K (2001) ATRP of methyl methacrylate in the presence of ionic liquids with ferrous and cuprous anions. Macromol Chem Phys 202(17):3379–3391

    Google Scholar 

  28. Hou C, Qu R, Sun C, Ji C, Wang C, Ying L, Jiang N, Xiu F, Chen L (2008) Novel ionic liquids as reaction medium for ATRP of acrylonitrile in the absence of any ligand. Polymer 49(16):3424–3427

    Google Scholar 

  29. Xiao G, Zhang H, Hong X, Zhang G, Zhou X, Xia B (2008) Atom transfer radical polymerization of methyl methacrylate in a novel ionic liquid and recycling of the catalyst. J Appl Polym Sci 108(6):3683–3689

    Google Scholar 

  30. Chen H, Liang Y, Wang M, Lv P, Xuan Y (2009) Reverse ATRP of ethyl acrylate with ionic liquids as reaction medium. Chem Eng J 147(2–3):297–301

    Google Scholar 

  31. Hou C, Qu R, Ji C, Sun C, Wang C (2008) Reverse ATRP process of acrylonitrile in the presence of ionic liquids. J Polym Sci Part A: Polym Chem 46(8):2701–2707

    ADS  Google Scholar 

  32. Li N, Lu J, Xu Q, Xia X, Wang L (2007) Reverse atom transfer radical polymerization of MMA via immobilized catalysts in imidazolium ionic liquids. J Appl Polym Sci 103(6):3915–3919

    Google Scholar 

  33. Ma H, Wan X, Chen X, Zhou Q-F (2003) Reverse atom transfer radical polymerization of methyl methacrylate in room-temperature ionic liquids. J Polym Sci Part A: Polym Chem 41(1):143–151

    ADS  Google Scholar 

  34. Ma H, Wan X, Chen X, Zhou Q-F (2003) Reverse atom transfer radical polymerization of methyl methacrylate in imidazolium ionic liquids. Polymer 44(18):5311–5316

    Google Scholar 

  35. Wang G, Lu M, Zhong M, Wu H (2011) Preparation of poly(N-butyl acrylate) by ATRP using initiators for continuous activator regeneration (ICAR) in ionic liquid. J Polym Res 19(1):1–6

    Google Scholar 

  36. Bai L, Zhang L, Zhang Z, Tu Y, Zhou N, Cheng Z, Zhu X (2010) Iron-mediated AGET ATRP of styrene in the presence of catalytic amounts of base. Macromolecules 43(22):9283–9290

    ADS  Google Scholar 

  37. Bai L, Zhang L, Zhang Z, Zhu J, Zhou N, Cheng Z, Zhu X (2011) Alumina additives for fast iron-mediated AGET ATRP of MMA using onium salt as ligand. J Polym Sci Part A: Polym Chem 49(18):3970–3979

    Google Scholar 

  38. Chen H, Wang C, Liu D, Wang M, Ji C (2011) ARGET ATRP of acrylonitrile with ionic liquid as reaction medium and FeBr3/isophthalic acid as catalyst system. J Appl Polym Sci 122(5):3298–3302

    Google Scholar 

  39. Deng Z, Guo J, Qiu L, Zhou Y, Xia L, Yan F (2012) Basic ionic liquids: a new type of ligand and catalyst for the AGET ATRP of methyl methacrylate. Polym Chem 3(9):2436–2443

    Google Scholar 

  40. Deng Z, Qiu L, Bai L, Zhou Y, Lin B, Zhao J, Cheng Z, Zhu X, Yan F (2012) Basic ionic liquid/FeCl3·6H2O as an efficient catalyst for AGET ATRP of methyl methacrylate. J Polym Sci Part A: Polym Chem 50(8):1605–1610

    Google Scholar 

  41. Min K, Gao H, Matyjaszewski K (2006) Development of an ab initio emulsion atom transfer radical polymerization: from microemulsion to emulsion. J Am Chem Soc 128(32):10521–10526

    Google Scholar 

  42. Min K, Matyjaszewski K (2005) Atom transfer radical polymerization in microemulsion. Macromolecules 38(20):8131–8134

    ADS  Google Scholar 

  43. Wang G-X, Lu M, Liu L-C, Wu H, Zhong M (2013) Fe-mediated ARGET atom transfer radical polymerization of methyl methacrylate in ionic liquid-based microemulsion. J Appl Polym Sci 128(5):3077–3083

    Google Scholar 

  44. Ding S, Radosz M, Shen Y (2005) Ionic liquid catalyst for biphasic atom transfer radical polymerization of methyl methacrylate. Macromolecules 38(14):5921–5928

    ADS  Google Scholar 

  45. Biedroń T, Kubisa P (2003) Ionic liquids as reaction media for polymerization processes: atom transfer radical polymerization (ATRP) of acrylates in ionic liquids. Polym Int 52(10):1584–1588

    Google Scholar 

  46. Biedroń T, Kubisa P (2005) Radical polymerization in a chiral ionic liquid: atom transfer radical polymerization of acrylates. J Polym Sci Part A: Polym Chem 43(15):3454–3459

    ADS  Google Scholar 

  47. Chen H, Chen L, Wang C, Qu R (2011) Atom transfer radical polymerization using activators regenerated by electron transfer of acrylonitrile in 1-(1-ethoxycarbonylethyl)-3-methylimidazolium hexafluorophosphate. J Polym Sci Part A: Polym Chem 49(4):1046–1049

    ADS  Google Scholar 

  48. Ma H-y, Wan X-h, Chen X-f, Zhou Q-f (2003) Design and synthesis of novel chiral ionic liquids and their application in free radical polymerization of methyl methacrylate. Chin J Polym Sci 21(3):265–270

    Google Scholar 

  49. Ryan J, Aldabbagh F, Zetterlund PB, Yamada B (2004) First nitroxide-mediated controlled/living free radical polymerization in an ionic liquid. Macromol Rapid Commun 25(9):930–934

    Google Scholar 

  50. Zhang H, Hong K, Mays J (2004) First report of nitroxide mediated polymerization in an ionic liquid. Polym Bull 52(1):9–16

    Google Scholar 

  51. Brusseau S, Boyron O, Schikaneder C, Santini CC, Charleux B (2010) Nitroxide-mediated controlled/living radical copolymerization of methyl methacrylate with a low amount of styrene in ionic liquid. Macromolecules 44(2):215–220

    ADS  Google Scholar 

  52. Perrier S, Davis TP, Carmichael AJ, Haddleton DM (2002) First report of reversible addition-fragmentation chain transfer (RAFT) polymerisation in room temperature ionic liquids. Chem Commun 19:2226–2227

    Google Scholar 

  53. Perrier S, Davis TP, Carmichael AJ, Haddleton DM (2003) Reversible addition–fragmentation chain transfer polymerization of methacrylate, acrylate and styrene monomers in 1-alkyl-3-methylimidazolium hexafluorophosphate. Eur Polym J 39(3):417–422

    Google Scholar 

  54. Johnston-Hall G, Harjani JR, Scammells PJ, Monteiro MJ (2009) RAFT-mediated polymerization of styrene in readily biodegradable ionic liquids. Macromolecules 42(5):1604–1609

    ADS  Google Scholar 

  55. Puttick S, Irvine DJ, Licence P, Thurecht KJ (2009) RAFT-functional ionic liquids: towards understanding controlled free radical polymerisation in ionic liquids. J Mater Chem 19(18):2679–2682

    Google Scholar 

  56. Puttick S, Davis AL, Butler K, Irvine DJ, Licence P, Thurecht KJ (2013) The influence of domain segregation in ionic liquids upon controlled polymerisation mechanisms: RAFT polymerisation. Polym Chem 4(5):1337–1344

    Google Scholar 

  57. Ban L, Han X, Wang X-H, Huang Y-P, Liu Z-S (2013) Carprofen-imprinted monolith prepared by reversible addition–fragmentation chain transfer polymerization in room temperature ionic liquids. Anal Bioanal Chem 405(26):8597–8605

    Google Scholar 

  58. Vijayaraghavan R, MacFarlane DR (2004) Charge transfer polymerization in ionic liquids. Aust J Chem 57(2):129–133

    Google Scholar 

  59. Vijayaraghavan R, MacFarlane DR (2006) Effect of hydrophobic and hydrophilic organic salts on charge transfer polymerisation of styrene. Eur Polym J 42(8):1830–1835

    Google Scholar 

  60. Vijayaraghavan R, MacFarlane DR (2006) Synthesis, reactivity ratios and characterization of hydroquinone promoted CT co-polymerization of styrene and methyl methacrylate in a room temperature ionic liquid. Eur Polym J 42(10):2736–2742

    Google Scholar 

  61. Vijayaraghavan R, MacFarlane DR (2004) Living cationic polymerisation of styrene in an ionic liquid. Chem Commun 6:700–701

    Google Scholar 

  62. Vijayaraghavan R, MacFarlane DR (2007) Organoborate acids as initiators for cationic polymerization of styrene in an ionic liquid medium. Macromolecules 40(18):6515–6520

    ADS  Google Scholar 

  63. Biedroń T, Kubisa P (2004) Cationic polymerization of styrene in a neutral ionic liquid. J Polym Sci Part A: Polym Chem 42(13):3230–3235

    ADS  Google Scholar 

  64. Baśko M, Biedroń T, Kubisa P (2009) Cationic polymerization of styrene involving ionization of the C-Cl bond in ionic liquid/SO2 mixture. J Polym Sci Part A: Polym Chem 47(20):5251–5257

    ADS  Google Scholar 

  65. Bueno C, Cabral VF, Cardozo-Filho L, Dias ML, Antunes OAC (2009) Cationic polymerization of styrene in scCO2 and [bmim][PF6]. J Supercrit Fluids 48(2):183–187

    Google Scholar 

  66. Kanazawa A, Hashizume R, Kanaoka S, Aoshima S (2014) Design of benign initiator for living cationic polymerization of vinyl ethers: facile in situ generation of vinyl ether–hydrogen halide adducts and subsequent controlled polymerization without a Lewis acid catalyst. Macromolecules 47(5):1578–1585

    ADS  Google Scholar 

  67. Biedroń T, Bednarek M, Kubisa P (2004) Cationic polymerization of 3-ethyl-3-hydroxymethyloxetane in an ionic liquid. Macromol Rapid Commun 25(8):878–881

    Google Scholar 

  68. Wang YY, Li W, Dai LY (2007) Cationic ring-opening polymerization of 3,3-bis(chloromethyl)oxacyclobutane in ionic liquids. Chin Chem Lett 18(10):1187–1190

    MathSciNet  Google Scholar 

  69. Nomura N, Taira A, Nakase A, Tomioka T, Okada M (2007) Ring-opening polymerization of lactones by rare-earth metal triflates and by their reusable system in ionic liquids. Tetrahedron 63(35):8478–8484

    Google Scholar 

  70. Kim I, Anas K, Lee S, Ha C-S, Park D-W (2008) Tuning of the activity and induction period of double metal cyanide catalyzed ring-opening polymerizations of propylene oxide by using ionic liquids. Catal Today 131(1–4):541–547

    Google Scholar 

  71. Ling J, You L, Wang Y, Shen Z (2012) Ring-opening polymerization of cyclohexene oxide by recyclable scandium triflate in room temperature ionic liquid. J Appl Polym Sci 124(3):2537–2540

    Google Scholar 

  72. Oshimura M, Takasu A, Nagata K (2009) Controlled ring-opening polymerization of ∈-caprolactone using polymer-supported scandium trifluoromethanesulfonate in organic solvent and ionic liquids. Macromolecules 42(8):3086–3091

    Google Scholar 

  73. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124(18):4974–4975

    Google Scholar 

  74. Kokubo H, Watanabe M (2008) Anionic polymerization of methyl methacrylate in an ionic liquid. Polym Adv Technol 19(10):1441–1444

    Google Scholar 

  75. Biedroń T, Kubisa P (2007) Chain transfer to ionic liquid in an anionic polymerization of methyl methacrylate. J Polym Sci Part A: Polym Chem 45(17):4168–4172

    ADS  Google Scholar 

  76. Biedroń T, Kubisa P (2008) Imidazolium ionic liquids with short polyoxyethylene chains. J Polym Sci Part A: Polym Chem 46(20):6961–6968

    ADS  Google Scholar 

  77. Vijayaraghavan R, Pringle JM, MacFarlane DR (2008) Anionic polymerization of styrene in ionic liquids. Eur Polym J 44(6):1758–1762

    Google Scholar 

  78. Mori H, Iwata M, Ito S, Endo T (2007) Ring-opening polymerization of γ-benzyl-l-glutamate-N-carboxyanhydride in ionic liquids. Polymer 48(20):5867–5877

    Google Scholar 

  79. Vijayaraghavan R, MacFarlane DR (2005) Group transfer polymerisation in hydrophobic ionic liquids. Chem Commun 9:1149–1151

    Google Scholar 

  80. Chauvin Y, Gilbert B, Guibard I (1990) Catalytic dimerization of alkenes by nickel complexes in organochloroaluminate molten salts. J Chem Soc Chem Commun 23:1715–1716

    Google Scholar 

  81. Carlin RT, Osteryoung RA, Wilkes JS, Rovang J (1990) Studies of titanium(IV) chloride in a strongly Lewis acidic molten salt: electrochemistry and titanium NMR and electronic spectroscopy. Inorg Chem 29(16):3003–3009

    Google Scholar 

  82. Carlin RT, Wilkes JS (1990) Complexation of Cp2MCl2 in a chloroaluminate molten salt: relevance to homogeneous Ziegler-Natta catalysis. J Mol Catal 63(2):125–129

    Google Scholar 

  83. Ellis B, Keim W, Wasserscheid P (1999) Linear dimerisation of but-1-ene in biphasic mode using buffered chloroaluminate ionic liquid solvents. Chem Commun 4:337–338

    Google Scholar 

  84. Suarez PAZ, Dullius JEL, Einloft S, De Souza RF, Dupont J (1996) The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes. Polyhedron 15(7):1217–1219

    Google Scholar 

  85. Wasserscheid P, Gordon CM, Hilgers C, Muldoon MJ, Dunkin IR (2001) Ionic liquids: polar, but weakly coordinating solvents for the first biphasic oligomerisation of ethene to higher [small alpha]-olefins with cationic Ni complexes. Chem Commun 13:1186–1187

    Google Scholar 

  86. Wasserscheid P, Hilgers C, Keim W (2004) Ionic liquids – weakly-coordinating solvents for the biphasic ethylene oligomerization to α-olefins using cationic Ni-complexes. J Mol Catal A: Chem 214(1):83–90

    Google Scholar 

  87. McGuinness DS, Mueller W, Wasserscheid P, Cavell KJ, Skelton BW, White AH, Englert U (2001) Nickel(II) heterocyclic carbene complexes as catalysts for olefin dimerization in an imidazolium chloroaluminate ionic liquid. Organometallics 21(1):175–181

    Google Scholar 

  88. Bernardo-Gusmão K, Trevisan Queiroz LF, de Souza RF, Leca F, Loup C, Réau R (2003) Biphasic oligomerization of ethylene with nickel–1,2-diiminophosphorane complexes immobilized in 1-N-butyl-3-methylimidazolium organochloroaluminate. J Catal 219(1):59–62

    Google Scholar 

  89. Pei L, Liu X, Gao H, Wu Q (2009) Biphasic oligomerization of ethylene with nickel complexes immobilized in organochloroaluminate ionic liquids. Appl Organomet Chem 23(11):455–459

    Google Scholar 

  90. Dötterl M, Thoma P, Alt HG (2012) Facile synthesis of new cationic triphenylphosphine derivatives and their use for propene dimerization reactions in buffered chloroaluminate ionic liquids. Adv Synth Catal 354(2–3):389–398

    Google Scholar 

  91. Dötterl M, Alt HG (2012) Buffered aluminum chloride as a highly efficient cocatalyst for olefin dimerization and polymerization. ChemCatChem 4(3):370–378

    Google Scholar 

  92. Pinheiro MF, Mauler RS, de Souza RF (2001) Biphasic ethylene polymerization with a diiminenickel catalyst. Macromol Rapid Commun 22(6):425–428

    Google Scholar 

  93. Ochędzan-Siodłak W, Sacher-Majewska B (2007) Biphasic ethylene polymerisation using ionic liquid over a titanocene catalyst activated by an alkyl aluminium compound. Eur Polym J 43(8):3688–3694

    Google Scholar 

  94. Ochędzan-Siodłak W, Dziubek K, Siodłak D (2008) Biphasic ethylene polymerisation using 1-N-alkyl-3-methylimidazolium tetrachloroaluminate ionic liquid as a medium of the Cp2TiCl2 titanocene catalyst. Eur Polym J 44(11):3608–3614

    Google Scholar 

  95. Ochędzan-SiodłAk W, Dziubek K, Czaja K (2009) Comparison of imidazolium and pyridinium ionic liquids as the media for biphasic ethylene polymerization in the presence of titanocene catalyst. Polimery 54:7–8

    Google Scholar 

  96. Mastrorilli P, Nobile CF, Gallo V, Suranna GP, Farinola G (2002) Rhodium(I) catalyzed polymerization of phenylacetylene in ionic liquids. J Mol Catal A: Chem 184(1–2):73–78

    Google Scholar 

  97. Klingshirn MA, Broker GA, Holbrey JD, Shaughnessy KH, Rogers RD (2002) Polar, non-coordinating ionic liquids as solvents for the alternating copolymerization of styrene and CO catalyzed by cationic palladium catalysts. Chem Commun 13:1394–1395

    Google Scholar 

  98. Hardacre C, Holbrey JD, Katdare SP, Seddon KR (2002) Alternating copolymerisation of styrene and carbon monoxide in ionic liquids. Green Chem 4(2):143–146

    Google Scholar 

  99. Vijayakrishna K, Sundararajan G (2006) Titanium precatalysts bearing N-substituted β-amino alcohols for 1-hexene polymerization: the effect of steric crowding. Polymer 47(10):3363–3371

    Google Scholar 

  100. Sudhakar P, Vijayakrishna K (2010) Highly stereoselective living polymerization of vinyl ethers at ambient temperature mediated by chiral titanium complexes. ChemCatChem 2(6):649–652

    Google Scholar 

  101. Vygodskii YS, Lozinskaya EI, Shaplov AS (2002) Ionic liquids as novel reaction media for the synthesis of condensation polymers. Macromol Rapid Commun 23(12):676–680

    Google Scholar 

  102. Vygodskii YS, Lozinskaya EI, Shaplov AS, Lyssenko KA, Antipin MY, Urman YG (2004) Implementation of ionic liquids as activating media for polycondensation processes. Polymer 45(15):5031–5045

    Google Scholar 

  103. Lozinskaya EI, Shaplov AS, Vygodskii YS (2004) Direct polycondensation in ionic liquids. Eur Polym J 40(9):2065–2075

    Google Scholar 

  104. Tamada M, Hayashi T, Ohno H (2007) Improved solubilization of pyromellitic dianhydride and 4,4′-oxydianiline in ionic liquid by the addition of zwitterion and their polycondensation. Tetrahedron Lett 48(9):1553–1557

    Google Scholar 

  105. Lozinskaya EI, Shaplov AS, Kotseruba MV, Komarova LI, Lyssenko KA, Antipin MY, Golovanov DG, Vygodskii YS (2006) “One-pot” synthesis of aromatic poly(1,3,4-oxadiazole)s in novel solvents – ionic liquids. J Polym Sci Part A: Polym Chem 44(1):380–394

    ADS  Google Scholar 

  106. Shaplov AS, Lozinskaya EI, Odinets IL, Lyssenko KA, Kurtova SA, Timofeeva GI, Iojoiu C, Sanchez J-Y, Abadie MJM, Voytekunas VY, Vygodskii YS (2008) Novel phosphonated poly(1,3,4-oxadiazole)s: synthesis in ionic liquid and characterization. React Funct Polym 68(1):208–224

    Google Scholar 

  107. Zhu L, Huang C-Y, Patel YH, Wu J, Malhotra SV (2006) Synthesis of porous polyurea with room-temperature ionic liquids via interfacial polymerization. Macromol Rapid Commun 27(16):1306–1311

    Google Scholar 

  108. Dali S, Lefebvre H, Gharbi RE, Fradet A (2006) Synthesis of poly(glycolic acid) in ionic liquids. J Polym Sci Part A: Polym Chem 44(9):3025–3035

    ADS  Google Scholar 

  109. Fu C, Liu Z (2008) Syntheses of high molecular weight aliphatic polyesters in 1-alkyl-3-methylimidazolium ionic liquids. Polymer 49(2):461–466

    Google Scholar 

  110. Clark HR, Jones MM (1970) Ligand substitution catalysis via hard acid-hard base interaction. J Am Chem Soc 92(4):816–822

    Google Scholar 

  111. Ogoshi T, Onodera T, Yamagishi T-a, Nakamoto Y (2008) Green polymerization of phenol in ionic liquids. Macromolecules 41(22):8533–8536

    ADS  Google Scholar 

  112. Zhang S, Feret A, Lefebvre H, Tessier M, Fradet A (2011) Poly(oxyalkylene) synthesis in bronsted acid ionic liquids. Chem Commun 47(39):11092–11094

    Google Scholar 

  113. Gunaratne HQN, Langrick CR, Puga AV, Seddon KR, Whiston K (2013) Production of polyetheretherketone in ionic liquid media. Green Chem 15(5):1166–1172

    Google Scholar 

  114. Whitesides GM, Wong C-H (1985) Enzymes as catalysts in synthetic organic chemistry [new synthetic methods (53)]. Angew Chem Int Ed 24(8):617–638

    Google Scholar 

  115. Drauz K, Gröger H, May O (2012) Enzyme catalysis in organic synthesis: a comprehensive handbook. Enzyme catalysis in organic synthesis: a comprehensive handbook. Wiley-VCH Verlag & Co, Weinheim, Germany

    Google Scholar 

  116. Gross RA, Kumar A, Kalra B (2001) Polymer synthesis by in vitro enzyme catalysis. Chem Rev 101(7):2097–2124

    Google Scholar 

  117. Kobayashi S, Uyama H, Kimura S (2001) Enzymatic polymerization. Chem Rev 101(12):3793–3818

    Google Scholar 

  118. Cull SG, Holbrey JD, Vargas-Mora V, Seddon KR, Lye GJ (2000) Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol Bioeng 69(2):227–233

    Google Scholar 

  119. Erbeldinger M, Mesiano AJ, Russell AJ (2000) Enzymatic catalysis of formation of Z-aspartame in ionic liquid − an alternative to enzymatic catalysis in Organic Solvents. Biotechnol Progr 16(6):1129–1131

    Google Scholar 

  120. Park S, Kazlauskas RJ (2003) Biocatalysis in ionic liquids – advantages beyond green technology. Curr Opin Biotechnol 14(4):432–437

    Google Scholar 

  121. Marcilla R, de Geus M, Mecerreyes D, Duxbury CJ, Koning CE, Heise A (2006) Enzymatic polyester synthesis in ionic liquids. Eur Polym J 42(6):1215–1221

    Google Scholar 

  122. Nara SJ, Harjani JR, Salunkhe MM, Mane AT, Wadgaonkar PP (2003) Lipase-catalysed polyester synthesis in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Tetrahedron Lett 44(7):1371–1373

    Google Scholar 

  123. Uyama H, Takamoto T, Kobayashi S (2002) Enzymatic synthesis of polyesters in ionic liquids. Polym J 34(2):94–96

    Google Scholar 

  124. Gorke JT, Okrasa K, Louwagie A, Kazlauskas RJ, Srienc F (2007) Enzymatic synthesis of poly(hydroxyalkanoates) in ionic liquids. J Biotechnol 132(3):306–313

    Google Scholar 

  125. Yoshizawa-Fujita M, Saito C, Takeoka Y, Rikukawa M (2008) Lipase-catalyzed polymerization of l-lactide in ionic liquids. Polym Adv Technol 19(10):1396–1400

    Google Scholar 

  126. Barrera-Rivera KA, Marcos-Fernández Á, Vera-Graziano R, Martínez-Richa A (2009) Enzymatic ring-opening polymerization of ε-caprolactone by Yarrowia lipolytica lipase in ionic liquids. J Polym Sci Part A: Polym Chem 47(21):5792–5805

    ADS  Google Scholar 

  127. Chanfreau S, Mena M, Porras-Domínguez J, Ramírez-Gilly M, Gimeno M, Roquero P, Tecante A, Bárzana E (2010) Enzymatic synthesis of poly-l-lactide and poly-l-lactide-co-glycolide in an ionic liquid. Bioprocess Biosyst Eng 33(5):629–638

    Google Scholar 

  128. Mena M, Chanfreau S, Gimeno M, Bárzana E (2010) Enzymatic synthesis of poly-l-lactide-co-glycolide in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Bioprocess Biosyst Eng 33(9):1095–1101

    Google Scholar 

  129. Dong F-X, Zhang L, Tong X-Z, Chen H-B, Wang X-L, Wang Y-Z (2012) Ionic liquid coated lipase: green synthesis of high molecular weight poly(1,4-dioxan-2-one). J Mol Catal B: Enzym 77:46–52

    Google Scholar 

  130. Mena M, López-Luna A, Shirai K, Tecante A, Gimeno M, Bárzana E (2013) Lipase-catalyzed synthesis of hyperbranched poly-l-lactide in an ionic liquid. Bioprocess Biosyst Eng 36(3):383–387

    Google Scholar 

  131. Wu C, Zhang Z, Chen C, He F, Zhuo R (2013) Synthesis of poly(ε-caprolactone) by an immobilized lipase coated with ionic liquids in a solvent-free condition. Biotechnol Lett 35(10):1623–1630

    Google Scholar 

  132. Zhang Z, He F, Zhuo R (2013) Immobilized lipase on porous silica particles: preparation and application for biodegradable polymer syntheses in ionic liquid at higher temperature. J Mol Catal B: Enzym 94:129–135

    Google Scholar 

  133. Eker B, Zagorevski D, Zhu G, Linhardt RJ, Dordick JS (2009) Enzymatic polymerization of phenols in room-temperature ionic liquids. J Mol Catal B: Enzym 59(1–3):177–184

    Google Scholar 

  134. Gu Y, Tsai J-Y (2012) Enzymatic synthesis of conductive polyaniline in the presence of ionic liquid. Synth Met 161(23–24):2743–2747

    Google Scholar 

  135. Abdolmaleki A, Mohamadi Z (2013) Acidic ionic liquids catalyst in homo and graft polymerization of ε-caprolactone. Colloid Polym Sci 291(8):1999–2005

    Google Scholar 

  136. Dukuzeyezu E-M, Lefebvre H, Tessier M, Fradet A (2010) Synthesis of high molar mass poly(12-hydroxydodecanoic acid) in brønsted acid ionic liquids. Polymer 51(6):1218–1221

    Google Scholar 

  137. Zhang S, Lefebvre H, Tessier M, Fradet A (2011) Influence of Bronsted acid ionic liquid structure on hydroxyacid polyesterification. Green Chem 13(10):2786–2793

    Google Scholar 

  138. Peng Q, Mahmood K, Wu Y, Wang L, Liang Y, Shen J, Liu Z (2014) A facile route to realize the copolymerization of l-lactic acid and [varepsilon]-caprolactone: sulfonic acid-functionalized Bronsted acidic ionic liquids as both solvents and catalysts. Green Chem 16:2234–2241

    Google Scholar 

  139. Liu S, Xie C, Yu S, Liu F (2009) Polymerization of α-pinene using Lewis acidic ionic liquid as catalyst. Catal Commun 10(6):986–988

    Google Scholar 

  140. Liu S, Zhou L, Yu S, Xie C, Liu F, Song Z (2013) Polymerization of α-pinene using Lewis acidic ionic liquid as catalyst for production of terpene resin. Biomass Bioenergy 57:238–242

    Google Scholar 

  141. Liu S, Li L, Yu S, Xie C, Liu F, Song Z (2010) Polymerization of fatty acid methyl ester using acidic ionic liquid as catalyst. Chin J Catal 31(11–12):1433–1438

    Google Scholar 

  142. Chen D, Sahasrabudhe A, Wang P, Dasgupta A, Yuan R, Roy S (2013) Synthesis and properties of a novel quarternerized imidazolium [[small alpha]-PW12O40]3- salt as a recoverable photo-polymerization catalyst. Dalton Trans 42(29):10587–10596

    Google Scholar 

  143. Gupta M, Singh R (2009) Thermally induced cationic polymerization of glycidyl phenyl ether using novel xanthenyl phosphonium salts. Macromol Res 17(4):221–226

    Google Scholar 

  144. Biedroń T, Pietrzak Ł, Kubisa P (2011) Ionic liquid functionalized polylactide by cationic polymerization: synthesis and stabilization of carbon nanotube suspensions. J Polym Sci Part A: Polym Chem 49(24):5239–5244

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari Vijayakrishna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vijayakrishna, K., Manojkumar, K., Sivaramakrishna, A. (2015). Ionic Liquids as Solvents and/or Catalysts in Polymerization. In: Mecerreyes, D. (eds) Applications of Ionic Liquids in Polymer Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44903-5_13

Download citation

Publish with us

Policies and ethics