Skip to main content

Abstract

This chapter describes the different applications of Poly(ionic liquid)s in nanotechnology, including nanocomposites and nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38:1009–10036

    Google Scholar 

  2. Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36:1629–1648

    Google Scholar 

  3. Yuan J, Antonietti M (2011) Poly(ionic liquid)s: polymers expanding classical property profiles. Polymer 52:1469–1482

    Google Scholar 

  4. Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448

    Google Scholar 

  5. Green O, Grubjesic S, Lee S, Firestone MA (2009) The design of polymeric ionic liquids for the preparation of functional materials. Polym Rev 49:339–360

    Google Scholar 

  6. Green M, Long T (2009) Designing imidazole-based ionic liquids and ionic liquid monomers for emerging technologies. Polym Rev 49:291–314

    Google Scholar 

  7. Narita A, Shibayama W, Matsumi N, Ohno H (2006) Novel ion conductive matrix via dehydrocoupling polymerization of imidazolium-type ionic liquid and lithium 9-borabicyclo[3,3,1]nonane hydride. Polym Bull 57:109–114

    Google Scholar 

  8. Salamone JC, Volksen W, Israel SC, Olson AP, Raia DC (1977) Preparation of inner salt polymers from vinylimidazolium sulfobetaines. Polymer 18:1058–1062

    Google Scholar 

  9. Yoshizawa M, Hirao M, Ito-Akita K, Ohno H (2001) Ion conduction in zwitterionic-type molten salts and their polymers. J Mater Chem 11:1057–1062

    Google Scholar 

  10. Pujolfortin ML, Galin JC (1991) Poly(ammonium alkoxydicyanoethenolates) as new hydrophobic and highly dipolar poly(zwitterions). 1. Synthesis. Macromolecules 24:4523–4530

    ADS  Google Scholar 

  11. Hoover MF (1970) Cationic quaternary polyelectrolytes. A literature review. J Macromol Sci A Chem 4:1327–1418

    Google Scholar 

  12. Hamid SM, Sherrington DC (1987) Novel quaternary ammonium amphiphilic (meth)acrylates: 1. Synthesis, melting and interfacial behaviour. Polymer 28:325–331

    Google Scholar 

  13. Hamid SM, Sherrington DC (1987) Novel quaternary ammonium amphiphilic (meth)acrylates: 2. Thermally and photochemically initiated polymerizations. Polymer 28:332–339

    Google Scholar 

  14. Ohno H, Yoshizawa M, Ogihara W (2004) Development of new class of ion conductive polymers based on ionic liquids. Electrochim Acta 50:255–261

    Google Scholar 

  15. Hoshino K, Yoshio M, Mukai T, Kishimoto K, Ohno H, Kato T (2003) Nanostructured ion-conductive films: layered assembly of a side-chain liquid-crystalline polymer with an imidazolium ionic moiety. J Polym Sci Part A Polym Chem 41:3486–3492

    ADS  Google Scholar 

  16. Yoshizawa M, Ogihara W, Ohno H (2002) Novel polymer electrolytes prepared by copolymerization of ionic liquid monomers. Polym Adv Technol 13:589–594

    Google Scholar 

  17. Hirao M, Ito K, Ohno H (2000) Preparation and polymerization of new organic molten salts; N-alkylimidazolium salt derivatives. Electrochim Acta 45:1291–1294

    Google Scholar 

  18. Ohno H, Ito K (1998) Room-temperature molten salt polymers as a matrix for fast ion conduction. Chem Lett 27:751–752

    Google Scholar 

  19. Ogihara W, Washiro S, Nakajima H, Ohno H (2006) Effect of cation structure on the electrochemical and thermal properties of ion conductive polymers obtained from polymerizable ionic liquids. Electrochim Acta 51:2614–2619

    Google Scholar 

  20. Nakajima H, Ohno H (2005) Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymer 46:11499–11504

    Google Scholar 

  21. Washiro S, Yoshizawa M, Nakajima H, Ohno H (2004) Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids. Polymer 45:1577–1582

    Google Scholar 

  22. Ogihara W, Suzuki N, Nakamura N, Ohno H (2006) Electrochemical and spectroscopic analyses of lithium ion conductive polymers prepared by the copolymerization of ionic liquid monomer with lithium salt monomer. Polym J 38:117–121

    Google Scholar 

  23. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941

    Google Scholar 

  24. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    ADS  Google Scholar 

  25. Banerjee S, Hemraj-Benny T, Wong SS (2005) Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater 17:17–29

    Google Scholar 

  26. Feldheim DL, Foss CA (eds) (2002) Metal nanoparticles: synthesis, characterization, and applications. Marcel Dekker, New York

    Google Scholar 

  27. Dupas C, Houdy P, Lahmani M (eds) (2007) Nanoscience. Nanotechnologies and nanophysics. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  28. Marcilla R, Curri ML, Cozzoli PD, Martinez MT, Loinaz I, Grande H, Pomposo JA, Mecerreyes D (2006) Nano-objects on a round trip from water to organics in a polymeric ionic liquid vehicle. Small 2:507–512

    Google Scholar 

  29. Rosca ID, Watari F, Uo M, Akasaka T (2005) Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43:3124–3131

    Google Scholar 

  30. Asuri P, Karajanagi SS, Sellitto E, Kim DY, Kane RS, Dordick JS (2006) Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnol Bioeng 95:804–811

    Google Scholar 

  31. Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300:2072–2074

    ADS  Google Scholar 

  32. Chang YH, Lin PY, Wu MS, Lin KF (2012) Extraordinary aspects of bromo-functionalized multi-walled carbon nanotubes as initiator for polymerization of ionic liquid monomers. Polymer 53:2008–2014

    Google Scholar 

  33. Katsigiannopoulos D, Grana E, Avgeropoulos A, Carrasco PM, Garcia I, Odriozola I, Diamanti E, Gournis D (2012) Nanohybrids based on polymeric ionic liquid prepared from functionalized MWCNTs by modification of anionically synthesized poly(4-vinylpyridine). J Polym Sci Part A Polym Chem 50:1181–1186

    ADS  Google Scholar 

  34. Kim TY, Lee HW, Stoller M, Dreyer DR, Bielawski CW, Ruoff RS, Suh KS (2011) High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. ACS Nano 5:436–442

    Google Scholar 

  35. Zhang Q, Qiao Y, Hao F, Zhang L, Wu S, Li Y, Li J, Song XM (2010) Fabrication of a biocompatible and conductive platform based on a single-stranded DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis. Chem Eur J 16:8133–8139

    Google Scholar 

  36. Liu K, Zhang J, Yang G, Wang C, Zhu JJ (2010) Direct electrochemistry and electrocatalysis of hemoglobin based on poly(diallyldimethylammonium chloride) functionalized graphene sheets/room temperature ionic liquid composite film. Electrochem Commun 12:402–405

    Google Scholar 

  37. Tung TT, Kim TY, Shim JP, Yang WS, Kim H, Suh KS (2011) Poly(ionic liquid)-stabilized graphene sheets and their hybrid with poly(3,4-ethylenedioxythiophene). Org Electron 12:2215–2224

    Google Scholar 

  38. Kim TY, Lee TH, Kim JE, Kasi RM, Sung CSP, Suh KS (2008) Organic solvent dispersion of poly(3,4-ethylenedioxythiophene) with the use of polymeric ionic liquid. J Polym Sci Part A Polym Chem 46:6872–6879

    ADS  Google Scholar 

  39. Marcilla R, Ochoteco E, Pozo-Gonzalo C, Grande H, Pomposo JA, Mecerreyes D (2005) New organic dispersions of conducting polymers using polymeric ionic liquids as stabilizers. Macromol Rapid Commun 26:1122–1126

    Google Scholar 

  40. Wu B, Hu D, Kuang Y, Liu B, Zhang X, Chen J (2009) Functionalization of carbon nanotubes by an ionic-liquid polymer: dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol. Angew Chem Int Ed 48:4751–4754

    Google Scholar 

  41. Chu X, Wu B, Xiao C, Zhang X, Chen J (2010) A new amperometric glucose biosensor based on platinum nanoparticles/polymerized ionic liquid-carbon nanotubes nanocomposites. Electrochim Acta 55:2848–2852

    Google Scholar 

  42. Male KB, Hrapovic S, Luong JHT (2007) Electrochemically-assisted deposition of oxidases on platinum nanoparticle/multi-walled carbon nanotube-modified electrodes. Analyst 132:1254–1261

    ADS  Google Scholar 

  43. Volder MFLD, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    ADS  Google Scholar 

  44. Tanaka K, Yamabe T, Fukui K (eds) (2009) The science and technology of carbon nanotubes. Elsevier Science, Amsterdam

    Google Scholar 

  45. Zhao X, Ohkohchi M, Wang M, Iijima S, Ichihashi T, Ando Y (1997) Preparation of high-grade carbon nanotubes by hydrogen arc discharge. Carbon 35:775–781

    Google Scholar 

  46. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    ADS  Google Scholar 

  47. Harris PJF (1999) Carbon nanotubes and related structures. New materials for the twenty-first century. Cambridge University Press, Cambridge

    Google Scholar 

  48. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680

    ADS  Google Scholar 

  49. Monthioux M, Serp P, Flahaut E, Razafinimanana M, Laurent C, Peigney A, Bacsa W, Broto JM (2004) Introduction to carbon nanotubes. In: Bhusham B (ed) Handbook of nano-technology, part A. Springer, Berlin/Heidelberg, pp 47–118

    Google Scholar 

  50. Schnorr JM, Swager TM (2011) Emerging applications of carbon nanotubes. Chem Mater 23:646–657

    Google Scholar 

  51. Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM (1998) Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology. Nature 394:52–55

    ADS  Google Scholar 

  52. Cheung CL, Hafner JH, Lieber CM (2000) Carbon nanotube atomic force microscopy tips: direct growth by chemical vapor deposition and application to high-resolution imaging. Proc Natl Acad Sci 97:3809–3813

    ADS  Google Scholar 

  53. Heer WAD, Châtelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270:1179–1180

    ADS  Google Scholar 

  54. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wire as chemical sensors. Science 287:622–625

    ADS  Google Scholar 

  55. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon annotates. Science 287:1801–1804

    ADS  Google Scholar 

  56. Hyunju C, Jae Do L, Seung Mi L, Young Hee L (2001) Adsorption of NH3 and NO2 molecules on carbon nanotubes. Appl Phys Lett 79:3863–3865

    Google Scholar 

  57. Varghese OK, Kichambre PD, Gong D, Ong KG, Dickey EC, Grimes CA (2001) Gas sensing characteristics of multi-wall carbon nanotubes. Sensors Actuators B Chem 81:32–41

    Google Scholar 

  58. Kong J, Chapline MG, Dai H (2001) Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 13:1384–1386

    Google Scholar 

  59. Ong KG, Zeng K, Grimes CA (2002) A wireless, passive carbon nanotube-based gas sensor. IEEE Sens J 2:82–88

    Google Scholar 

  60. Coq B, Marc Planeix J, Brotons VR (1998) Fullerene-based materials as new support media in heterogeneous catalysis by metals. Appl Catal A 173:175–183

    Google Scholar 

  61. Fischer JE, Johnson AT (1999) Electronic properties of carbon nanotubes. Curr Opin Solid State Mater Sci 4:28–33

    ADS  Google Scholar 

  62. Giordano R, Serp P, Kalck P, Kihn Y, Schreiber J, Marhic C, Duvail JL (2003) Preparation of rhodium catalysts supported on carbon nanotubes by a surface mediated organometallic reaction. Eur J Inorg Chem 2003:610–617

    Google Scholar 

  63. Kyotani T, Nakazaki S, Xu WH, Tomita A (2001) Chemical modification of the inner walls of carbon nanotubes by HNO3 oxidation. Carbon 39:782–785

    Google Scholar 

  64. Liu ZJ, Yuan ZY, Zhou W, Peng LM, Xu Z (2001) Co/carbon-nanotube monometallic system: the effects of oxidation by nitric acid. Phys Chem Chem Phys 3:2518–2521

    Google Scholar 

  65. Chunming N, Enid KS, Robert H, David M, Howard T (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70:1480–1482

    Google Scholar 

  66. Frackowiak E, Béguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40:1775–1787

    Google Scholar 

  67. Frackowiak E, Jurewicz K, Szostak K, Delpeux S, Béguin F (2002) Nanotubular materials as electrodes for supercapacitors. Fuel Process Technol 77–78:213–219

    Google Scholar 

  68. Lambin P, Fonseca A, Vigneron JP, Nagy JB, Lucas AA (1995) Structural and electronic properties of bent carbon nanotubes. Chem Phys Lett 245:85–89

    ADS  Google Scholar 

  69. Chico L, Crespi VH, Benedict LX, Louie SG, Cohen ML (1996) Pure carbon nanoscale devices: nanotube heterojunctions. Phys Rev Lett 76:971–974

    ADS  Google Scholar 

  70. Yao Z, Postma HWC, Balents L, Dekker C (1999) Carbon nanotube intramolecular junctions. Nature 402:273–276

    ADS  Google Scholar 

  71. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52

    ADS  Google Scholar 

  72. Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single and multiwall carbon nanotube field effect transistors. Appl Phys Lett 73:2447–2449

    ADS  Google Scholar 

  73. Derycke V, Martel R, Appenzeller J, Avouris P (2001) Carbon nanotube inter and intramolecular logic gates. Nano Lett 1:453–456

    ADS  Google Scholar 

  74. Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286:2148–2150

    Google Scholar 

  75. Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 27:706–709

    ADS  Google Scholar 

  76. Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, Rossi DD, Jaschinski AGRO, Roth S, Kertesz M (1999) Carbon nanotubes actuators. Science 284:1340–1344

    ADS  Google Scholar 

  77. Gao Y, Bando Y (2002) Nanotechnology: carbon nanothermometer containing gallium. Nature 415:599

    Google Scholar 

  78. Mattson M, Haddon R, Rao A (2000) Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci 14:175–182

    Google Scholar 

  79. Davis J, Green MLH, Allen O, Hill H, Leung YC, Sadler PJ, Sloan J, Xavier AV, Chi Tsang S (1998) The immobilisation of proteins in carbon nanotubes. Inorg Chim Acta 272:261–266

    Google Scholar 

  80. Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839

    Google Scholar 

  81. Shim M, Shi Kam NW, Chen RJ, Li Y, Dai H (2002) Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2:285–288

    ADS  Google Scholar 

  82. Dwyer C, Guthold M, Falvo M, Washburn S, Superfine R, Erie D (2002) DNA-functionalized single-walled carbon nanotubes. Nanotechnology 13:601–604

    ADS  Google Scholar 

  83. Huang W, Taylor S, Fu K, Lin Y, Zhang D, Hanks TW, Rao AM, Sun YP (2002) Attaching proteins to carbon nanotubes via diimide activated amidation. Nano Lett 2:311–314

    ADS  Google Scholar 

  84. Nguyen CV, Delzeit L, Cassell AM, Li J, Han J, Meyyappan M (2002) Preparation of nucleic acid functionalized carbon nanotube arrays. Nano Lett 2:1079–1081

    ADS  Google Scholar 

  85. Azamian BR, Davis JJ, Coleman KS, Bagshaw CB, Green MLH (2002) Bioelectrochemical single-walled carbon nanotubes. J Am Chem Soc 124:12664–12665

    Google Scholar 

  86. Dresselhaus MS, Williams KA, Eklund PC (1999) Hydrogen adsorption in carbon materials. Mater Res Soc Bull 24:45–50

    Google Scholar 

  87. Cheng HM, Yang QH, Liu C (2001) Hydrogen storage in carbon nanotubes. Carbon 39:1447–1454

    Google Scholar 

  88. Tibbetts GG, Meisner GP, Olk CH (2001) Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers. Carbon 39:2291–2301

    Google Scholar 

  89. Darkrim FL, Malbrunot P, Tartaglia GP (2002) Review of hydrogen storage by adsorption in carbon nanotubes. Int J Hydrogen Energy 27:193–202

    Google Scholar 

  90. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single walled carbon nanotubes. Nature 386:377–379

    ADS  Google Scholar 

  91. Ye Y, Ahn CC, Witham C, Fultz B, Liu J, Rinzler AG, Colbert D, Smith KA, Smalley RE (1999) Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl Phys Lett 74:2307–2309

    ADS  Google Scholar 

  92. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286:1127–1129

    Google Scholar 

  93. Hirscher M, Becher M, Haluska M, Dettlaff-Weglikowska U, Quintel A, Duesberg GS, Choi YM, Downes P, Hulman M, Roth S, Stepanek I, Bernier P (2001) Hydrogen storage in sonicated carbon materials. Appl Phys A 72:129–132

    ADS  Google Scholar 

  94. Gordon PA, Saeger RB (1999) Molecular modeling of adsorptive energy storage: hydrogen storage in single-walled carbon nanotubes. Ind Eng Chem Res 38:4647–4655

    Google Scholar 

  95. Seung Mi L, Young Hee L (2000) Hydrogen storage in single-walled carbon nanotubes. Appl Phys Lett 76:2877–2879

    ADS  Google Scholar 

  96. Lee SM, Park KS, Choi YC, Park YS, Bok JM, Bae DJ, Nahm KS, Choi YG, Yu SC, Kim NG, Frauenheim T, Lee YH (2000) Hydrogen adsorption and storage in carbon nanotubes. Synth Met 113:209–216

    Google Scholar 

  97. Cheng H, Pez GP, Cooper AC (2001) Mechanism of hydrogen sorption in single-walled carbon nanotubes. J Am Chem Soc 123:5845–5846

    Google Scholar 

  98. Kuznetsova A, Mawhinney DB, Naumenko V, Yates JT Jr, Liu J, Smalley RE (2000) Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports. Chem Phys Lett 321:292–296

    ADS  Google Scholar 

  99. Gadd GE, Blackford M, Moricca S, Webb N, Evans PJ, Smith AM, Jacobsen G, Leung S, Day A, Hua Q (1997) The world’s smallest gas cylinders? Science 277:933–936

    Google Scholar 

  100. Mao Z, Sinnott SB (2000) A computational study of molecular diffusion and dynamic flow through carbon nanotubes. J Phys Chem B 104:4618–4624

    Google Scholar 

  101. Mao Z, Sinnott SB (2001) Separation of organic molecular mixtures in carbon nanotubes and bundles: molecular dynamics simulations. J Phys Chem B 105:6916–6924

    Google Scholar 

  102. Gu C, Gao GH, Yu YX, Nitta T (2002) Simulation for separation of hydrogen and carbon monoxide by adsorption on single-walled carbon nanotubes. Fluid Phase Equilib 194–197:297–307

    Google Scholar 

  103. Long RQ, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123:2058–2059

    Google Scholar 

  104. Li YH, Wang S, Cao A, Zhao D, Zhang X, Xu C, Luan Z, Ruan D, Liang J, Wu D, Wei B (2001) Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chem Phys Lett 350:412–416

    ADS  Google Scholar 

  105. Li YH, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357:263–266

    ADS  Google Scholar 

  106. Park C, Engel ES, Crowe A, Gilbert TR, Rodriguez NM (2000) Use of carbon nanofibers in the removal of organic solvents from water. Langmuir 16:8050–8056

    Google Scholar 

  107. Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128:37–46

    Google Scholar 

  108. Georgakilas V, Tagmatarchis N, Pantarotto D, Bianco A, Briand JP, Prato M (2002) Amino acid functionalisation of water soluble carbon nanotubes. Chem Commun 3050–3051

    Google Scholar 

  109. Li H, Cheng F, Duft AM, Adronov A (2005) Functionalization of single-walled carbon nanotubes with well-defined polystyrene by “click” coupling. J Am Chem Soc 127:14518–14524

    Google Scholar 

  110. Star A, Steuerman DW, Heath JR, Stoddart JF (2002) Starched carbon nanotubes. Angew Chem Int Ed 41:2508–2512

    Google Scholar 

  111. Backes C, Schmidt CD, Hauke F, Böttcher C, Hirsch A (2009) High population of individualized SWCNTs through the adsorption of water-soluble perylenes. J Am Chem Soc 131:2172–2184

    Google Scholar 

  112. Fukushima T, Aida T (2007) Ionic liquids for soft functional materials with carbon nanotubes. Chem Eur J 13:5048–5058

    Google Scholar 

  113. Fukushima T, Kosaka A, Yamamoto Y, Aimiya T, Notazawa S, Takigawa T, Inabe T, Aida T (2006) Dramatic effect of dispersed carbon nanotubes on the mechanical and electroconductive properties of polymers derived from ionic liquids. Small 2:554–560

    Google Scholar 

  114. Gao H, Zhang S, Huang D, Zheng L (2012) Dispersion of multi-wall carbon nanotubes by an ionic liquid-based polyether in aqueous solution. Colloid Polym Sci 290:757–762

    Google Scholar 

  115. Jo TS, Han H, Bhowmik PK, Ma L (2012) Dispersion of single-walled carbon nanotubes with poly(pyridinium salt)s containing various rigid aromatic moieties. Macromol Chem Phys 213:1378–1384

    Google Scholar 

  116. Hong S, Tung T, Huyen Trang L, Kim T, Suh K (2010) Preparation of single-walled carbon nanotube (SWNT) gel composites using poly(ionic liquids). Colloid Polym Sci 288:1013–1018

    Google Scholar 

  117. Kim T, Tung TT, Lee T, Kim J, Suh KS (2010) Poly(ionic liquid)-mediated hybridization of single-walled carbon nanotubes and conducting polymers. Chem Asian J 5:256–260

    Google Scholar 

  118. Ku BC, Kim DK, Lee JS, Blumstein A, Kumar J, Samuelson LA (2009) Synthesis and properties of water soluble single-walled carbon nanotube graft ionic polyacetylene nanocomposites. Polym Compos 30:1817–1824

    Google Scholar 

  119. Xiao C, Chu X, Wu B, Pang H, Zhang X, Chen J (2010) Polymerized ionic liquid-wrapped carbon nanotubes: the promising composites for direct electrochemistry and biosensing of redox protein. Talanta 80:1719–1724

    Google Scholar 

  120. Li Y, Li G, Wang X, Zhu Z, Ma H, Zhang T, Jin J (2012) Poly(ionic liquid)-wrapped single-walled carbon nanotubes for sub-ppb detection of CO2. Chem Commun 48:8222–8224

    Google Scholar 

  121. Pei X, Xia Y, Liu W, Yu B, Hao J (2008) Polyelectrolyte-grafted carbon nanotubes: synthesis, reversible phase-transition behavior, and tribological properties as lubricant additives. J Polym Sci Part A Polym Chem 46:7225–7237

    ADS  Google Scholar 

  122. Chi-An D, Chih-Chun H, Shih-Chun W, An-Cheng K, Chien-Pan L, Wei-Bor T, Wen-Shiang C, Wei-Ming L, Wen-Pin S, Chien-Ching M (2009) A membrane actuator based on an ionic polymer network and carbon nanotubes: the synergy of ionic transport and mechanical properties. Smart Mater Struct 18:085016

    ADS  Google Scholar 

  123. Du FP, Tang CY, Zhou XP, Xie XL (2011) Fabrication of an ionic polymer-carbon nanotube composite for a new configurative actuator. J Compos Mater 45:2055–2060

    Google Scholar 

  124. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    Google Scholar 

  125. Tunckol M, Durand J, Serp P (2012) Carbon nanomaterial-ionic liquid hybrids. Carbon 50:4303–4334

    Google Scholar 

  126. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901–905

    Google Scholar 

  127. Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889–892

    Google Scholar 

  128. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655

    ADS  Google Scholar 

  129. Zhang Q, Wu S, Zhang L, Lu J, Verproot F, Liu Y, Xing Z, Li J, Song XM (2011) Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry. Biosens Bioelectron 26:2632–2637

    Google Scholar 

  130. Liu H, Gao J, Xue M, Zhu N, Zhang M, Cao T (2009) Processing of graphene for electrochemical application: noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir 25:12006–12010

    Google Scholar 

  131. Yang H, Shan C, Li F, Han D, Zhang Q, Niu L (2009) Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem Commun 3880–3882

    Google Scholar 

  132. Bhunia P, Hwang E, Min M, Lee J, Seo S, Some S, Lee H (2012) A non-volatile memory device consisting of graphene oxide covalently functionalized with ionic liquid. Chem Commun 48:913–915

    Google Scholar 

  133. Karousis N, Economopoulos SP, Sarantopoulou E, Tagmatarchis N (2010) Porphyrin counter anion in imidazolium-modified graphene-oxide. Carbon 48:854–860

    Google Scholar 

  134. Baldelli S, Bao J, Wu W, Pei SS (2011) Sum frequency generation study on the orientation of room-temperature ionic liquid at the graphene-ionic liquid interface. Chem Phys Lett 516:171–173

    ADS  Google Scholar 

  135. Ghatee MH, Moosavi F (2011) Physisorption of hydrophobic and hydrophilic 1-alkyl-3-methylimidazolium ionic liquids on the graphenes. J Phys Chem C 115:5626–5636

    Google Scholar 

  136. Kim T, Lee H, Kim J, Suh KS (2010) Synthesis of phase transferable graphene sheets using ionic liquid polymers. ACS Nano 4:1612–1618

    Google Scholar 

  137. Zhou X, Wu T, Ding K, Hu B, Hou M, Han B (2010) Dispersion of graphene sheets in ionic liquid [bmim][PF6] stabilized by an ionic liquid polymer. Chem Commun 46:386–388

    Google Scholar 

  138. Zhou X, Wu T, Hu B, Yang G, Han B (2010) Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid. Chem Commun 46:3663–3665

    Google Scholar 

  139. Chen H, Zhao G (2012) Nanocomposite of polymerized ionic liquid and graphene used as modifier for direct electrochemistry of cytochrome c and nitric oxide biosensing. J Solid State Electrochem 16:3289–3297

    Google Scholar 

  140. Men Y, Li XH, Antonietti M, Yuan J (2012) Poly(tetrabutylphosphonium 4-styrenesulfonate): a poly(ionic liquid) stabilizer for graphene being multi-responsive. Polym Chem 3:871–873

    Google Scholar 

  141. Kohno Y, Ohno H (2012) Key factors to prepare polyelectrolytes showing temperature-sensitive lower critical solution temperature-type phase transitions in water. Aust J Chem 65:91–94

    Google Scholar 

  142. Price KE, Mason BP, Bogdan AR, Broadwater SJ, Steinbacher JL, McQuade DT (2006) Microencapsulated linear polymers: “soluble” heterogeneous catalysts. J Am Chem Soc 128:10376–10377

    Google Scholar 

  143. Mu XD, Meng JQ, Li ZC, Kou Y (2005) Rhodium nanoparticles stabilized by ionic copolymers in ionic liquids: long lifetime nanocluster catalysts for benzene hydrogenation. J Am Chem Soc 127:9694–9695

    Google Scholar 

  144. Yan N, Zhao C, Luo C, Dyson PJ, Liu H, Kou Y (2006) One-step conversion of cellobiose to C6-alcohols using a ruthenium nanocluster catalyst. J Am Chem Soc 128:8714–8715

    Google Scholar 

  145. Altava B, Burguete M, Garcia-Verdugo E, Karbass N, Luis SV, Puzary A, Sans V (2006) Palladium N-methylimidazolium supported complexes as efficient catalysts for the Heck reaction. Tetrahedron Lett 47:2311–2314

    Google Scholar 

  146. Byun JW, Lee YS (2004) Preparation of polymer-supported palladium/N-heterocyclic carbene complex for Suzuki cross-coupling reactions. Tetrahedron Lett 45:1837–1840

    Google Scholar 

  147. Zhao D, Fei Z, Ang WH, Dyson PJ (2006) A strategy for the synthesis of transition-metal nanoparticles and their transfer between liquid phases. Small 2:879–883

    Google Scholar 

  148. Schwartz J, Böhm VPW, Gardiner MG, Grosche M, Hermann WA, Hieringer W, Raudaschl-Sieter G (2000) Polymer-supported carbene complexes of palladium: well-defined, air-stable, recyclable catalysts for the Heck reaction. Chem Eur J 6:1773–1780

    Google Scholar 

  149. Carré A, Mittal KL (eds) (2009) Superhydrophobic surfaces. Koninlijke Brill Publishing, Leiden

    Google Scholar 

  150. Favret E, Fuentes NO (eds) (2009) Functional properties of bio-inspired surfaces. World Scientific Publishing, Singapore

    Google Scholar 

  151. Yoshida E, Nagakubo A (2007) Superhydrophobic surfaces of microspheres obtained by self-assembly of poly[2-(perfluorooctyl)ethyl acrylate-ran-2-(dimethylamino)ethyl acrylate] in supercritical carbon dioxide. Colloid Polym Sci 285:1293–1297

    Google Scholar 

  152. Schlenoff JB (2009) Retrospective on the future of polyelectrolyte multilayers. Langmuir 25:14007–14010

    Google Scholar 

  153. Genua A, Mecerreyes D, Alduncin JA, Mondragon I, Marcilla R, Grande HJ (2011) Polymeric ionic liquids for the fast preparation of superhydrophobic coatings by the simultaneous spraying of oppositely charged polyelectrolytes and nanoparticles. Polym J 43:966–970

    Google Scholar 

  154. Climent MJ, Corma A, Iborra S (2013) Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem Rev 111:1072–1133

    Google Scholar 

  155. Yin L, Liebscher J (2006) Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem Rev 107:133–173

    Google Scholar 

  156. Yuan X, Yan N, Xiao C, Li C, Fei Z, Cai Z, Kou Y, Dyson PJ (2010) Highly selective hydrogenation of aromatic chloronitro compounds to aromatic chloroamines with ionic-liquid-like copolymer stabilized platinum nanocatalysts in ionic liquids. Green Chemistry 12:228–233

    Google Scholar 

  157. Yuan J, Wunder S, Warmuth F, Lu Y (2012) Spherical polymer brushes with vinylimidazolium-type poly(ionic liquid) chains as support for metallic nanoparticles. Polymer 53:43–49

    Google Scholar 

  158. Yang X, Fei Z, Zhao D, Ang WH, Li Y, Dyson PJ (2008) Palladium nanoparticles stabilized by an ionic polymer and ionic liquid: a versatile system for C-C cross-coupling reactions. Inorg Chem 47:3292–3297

    Google Scholar 

  159. Biondi I, Laurenczy G, Dyson PJ (2013) Synthesis of gold nanoparticle catalysts based on a new water-soluble ionic polymer. Inorg Chem 50:8038–8045

    Google Scholar 

  160. Zhao C, Wang HZ, Yan N, Xiao CX, Mu XD, Dyson PJ, Kou Y (2007) Ionic-liquid-like copolymer stabilized nanocatalysts in ionic liquids: II. Rhodium-catalyzed hydrogenation of arenes. J Catal 250:33–40

    Google Scholar 

  161. Wang Y, Toshima N (1997) Preparation of Pd-Pt bimetallic colloids with controllable core/shell structures. J Phys Chem B 101:5301–5306

    Google Scholar 

  162. Pourjavadi A, Hosseini SH, Doulabi M, Fakoorpoor SM, Seidi F (2012) Multi-layer functionalized poly(ionic liquid) coated magnetic nanoparticles: highly recoverable and magnetically separable Bronsted acid catalyst. ACS Catalysis 2:1259–1266

    Google Scholar 

  163. Yang J, Qiu L, Liu B, Peng Y, Yan F, Shang S (2011) Synthesis of polymeric ionic liquid microsphere/Pt nanoparticle hybrids for electrocatalytic oxidation of methanol and catalytic oxidation of benzyl alcohol. J Polym Sci Part A Polym Chem 49:4531–4538

    ADS  Google Scholar 

  164. Tollan CM, Marcilla R, Pomposo JA, Rodriguez J, Aizpurua J, Molina J, Mecerreyes D (2009) Irreversible thermochromic behavior in gold and silver nanorod/polymeric ionic liquid nanocomposite films. ACS Appl Mater Interfaces 1:348–352

    Google Scholar 

  165. Batra D, Seifert S, Varela LM, Liu ACY, Firestone MA (2007) Solvent-mediated plasmon tuning in a gold-nanoparticle-poly(ionic liquid) composite. Adv Funct Mater 17:1279–1287

    Google Scholar 

  166. Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, Levina L, Sargent EH (2006) Ultrasensitive solution-cast quantum dot photodetectors. Nature 442:180–183

    ADS  Google Scholar 

  167. Son DI, Kwon BW, Park DH, Seo WS, Yi Y, Angadi B, Lee CL, Choi WK (2012) Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat Nanotechnol 7:465–471

    ADS  Google Scholar 

  168. Caruge JM, Halpert JE, Wood V, Bulović V, Bawendi MG (2008) Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat Photon 2:247–250

    Google Scholar 

  169. Anikeeva PO, Halpert JE, Bawendi MG, Bulović V (2007) Electroluminescence from a mixed red−green−blue colloidal quantum dot monolayer. Nano Lett 7:2196–2200

    ADS  Google Scholar 

  170. Li X, Ni X, Liang Z, Shen Z (2012) Synthesis of imidazolium-functionalized ionic polyurethane and formation of CdTe quantum dot–polyurethane nanocomposites. J Polym Sci Part A Polym Chem 50:509–516

    ADS  Google Scholar 

  171. O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    ADS  Google Scholar 

  172. Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A Chem 164:3–14

    Google Scholar 

  173. Yu Q, Wang Y, Yi Z, Zu N, Zhang J, Zhang M, Wang P (2013) High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states. ACS Nano 4:6032–6038

    Google Scholar 

  174. Chen X, Li Q, Zhao J, Qiu L, Zhang Y, Sun B, Yan F (2012) Ionic liquid-tethered nanoparticle/poly(ionic liquid) electrolytes for quasi-solid-state dye-sensitized solar cells. J Power Sources 207:216–221

    Google Scholar 

  175. Shi J, Wang L, Liang Y, Peng S, Cheng F, Chen J (2013) All-solid-state dye-sensitized solar cells with alkyloxy-imidazolium iodide ionic polymer/SiO2 nanocomposite electrolyte and triphenylamine-based organic dyes. J Phys Chem C 114:6814–6821

    Google Scholar 

  176. Zhang J, Meng L, Zhao D, Fei Z, Lu Q, Dyson PJ (2008) Fabrication of dendritic gold nanoparticles by use of an ionic polymer template. Langmuir 24:2699–2704

    Google Scholar 

  177. Yang W, Zhang L, Wang S, White AD, Jiang S (2009) Functionalizable and ultra stable nanoparticles coated with zwitterionic poly(carboxybetaine) in undiluted blood serum. Biomaterials 30:5617–5621

    Google Scholar 

  178. Cao Z, Jiang S (2012) Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles. Nano Today 7:404–413

    Google Scholar 

  179. Ye XR, Lin Y, Wang C, Engelhard MH, Wang Y, Wai CM (2004) Supercritical fluid synthesis and characterization of catalytic metal nanoparticles on carbon nanotubes. J Mater Chem 14:908–913

    Google Scholar 

  180. Qu L, Dai L, Osawa E (2006) Shape/size-controlled syntheses of metal nanoparticles for site-selective modification of carbon nanotubes. J Am Chem Soc 128:5523–5532

    Google Scholar 

  181. Mu Y, Liang H, Hu J, Jiang L, Wan L (2005) Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J Phys Chem B 109:22212–22216

    Google Scholar 

  182. Hsin YL, Hwang KC, Yeh CT (2007) Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells. J Am Chem Soc 129:9999–10010

    Google Scholar 

  183. Cao L, Scheiba F, Roth C, Schweiger F, Cremers C, Stimming U, Fuess H, Chen L, Zhu W, Qiu X (2006) Novel nanocomposite Pt/RuO2 × H2O/carbon nanotube catalysts for direct methanol fuel cells. Angew Chem 118:5441–5445

    Google Scholar 

  184. Kim YT, Ohshima K, Higashimine K, Uruga T, Takata M, Suematsu H, Mitani T (2006) Fine size control of platinum on carbon nanotubes: from single atoms to clusters. Angew Chem 118:421–425

    Google Scholar 

  185. Kim YT, Ohshima K, Higashimine K, Uruga T, Takata M, Suematsu H, Mitani T (2006) Fine size control of platinum on carbon nanotubes: from single atoms to clusters. Angew Chem Int Ed 45:407–411

    Google Scholar 

  186. Mackiewicz N, Surendran G, Remita H, Keita B, Zhang G, Nadjo L, Hagège A, Doris E, Mioskowski C (2008) Supramolecular self-assembly of amphiphiles on carbon nanotubes: a versatile strategy for the construction of CNT/metal nanohybrids, application to electrocatalysis. J Am Chem Soc 130:8110–8111

    Google Scholar 

  187. Prabhuram J, Zhao TS, Tang ZK, Chen R, Liang ZX (2006) Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells. J Phys Chem B 110:5245–5252

    Google Scholar 

  188. Xue X, Lu T, Liu C, Xu W, Su Y, Lv Y, Xing W (2005) Novel preparation method of Pt-Ru/C catalyst using imidazolium ionic liquid as solvent. Electrochim Acta 50:3470–3478

    Google Scholar 

  189. Tatumi R, Fujihara H (2005) Remarkably stable gold nanoparticles functionalized with a zwitterionic liquid based on imidazolium sulfonate in a high concentration of aqueous electrolyte and ionic liquid. Chem Commun 83–85

    Google Scholar 

  190. Kim KS, Demberelnyamba D, Lee H (2003) Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids. Langmuir 20:556–560

    Google Scholar 

  191. Wu B, Hu D, Yu Y, Kuang Y, Zhang X, Chen J (2010) Stabilization of platinum nanoparticles dispersed on carbon nanotubes by ionic liquid polymer. Chem Commun 46:7954–7956

    Google Scholar 

  192. Wang S, Wang X, Jiang SP (2008) PtRu nanoparticles supported on 1-aminopyrene-functionalized multiwalled carbon nanotubes and their electrocatalytic activity for methanol oxidation. Langmuir 24:10505–10512

    Google Scholar 

  193. Kuang Y, Wu B, Hu D, Zhang X, Chen J (2012) One-pot synthesis of highly dispersed palladium nanoparticles on acetylenic ionic liquid polymer functionalized carbon nanotubes for electrocatalytic oxidation of glucose. J Solid State Electrochem 16:759–766

    Google Scholar 

  194. Wu B, Kuang Y, Zhang Y, Zhang X, Chen J (2012) Carbonization of ionic liquid polymer-functionalized carbon nanotubes for high dispersion of PtRu nanoparticles and their electrocatalytic oxidation of methanol. J Mater Chem 22:13085–13090

    Google Scholar 

  195. Zhao H, Ju H (2006) Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase. Anal Biochem 350:138–144

    Google Scholar 

  196. Hrapovic S, Majid E, Liu Y, Male K, Luong JHT (2006) Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. Anal Chem 78:5504–5512

    Google Scholar 

  197. Chi Q, Dong S (1993) Flow-injection analysis of glucose at an amperometric glucose sensor based on electrochemical deposition of palladium and glucose oxidase on a glassy carbon electrode. Anal Chim Acta 278:17–23

    Google Scholar 

  198. Xu L, Zhu Y, Yang X, Li C (2009) Amperometric biosensor based on carbon nanotubes coated with polyaniline/dendrimer-encapsulated Pt nanoparticles for glucose detection. Mat Sci Eng C 29:1306–1310

    Google Scholar 

  199. Miscoria SA, Barrera GD, Rivas GA (2002) Analytical performance of a glucose biosensor prepared by immobilization of glucose oxidase and different metals into a carbon paste electrode. Electroanalysis 14:981–987

    Google Scholar 

  200. Chu X, Duan D, Shen G, Yu R (2007) Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Talanta 71:2040–2047

    Google Scholar 

  201. Wen D, Zou X, Liu Y, Shang L, Dong S (2009) Nanocomposite based on depositing platinum nanostructure onto carbon nanotubes through a one-pot, facile synthesis method for amperometric sensing. Talanta 79:1233–1237

    Google Scholar 

  202. Bo X, Bai J, Qi B, Guo L (2011) Ultra-fine Pt nanoparticles supported on ionic liquid polymer-functionalized ordered mesoporous carbons for nonenzymatic hydrogen peroxide detection. Biosens Bioelectron 28:77–83

    Google Scholar 

  203. Wang Q, Yun Y (2013) Nonenzymatic sensor for hydrogen peroxide based on the electrodeposition of silver nanoparticles on poly(ionic liquid)-stabilized graphene sheets. Microchimica Acta 180:261–268

    Google Scholar 

  204. Lu AH, Hao GP, Sun Q, Zhang XQ, Li WC (2012) Chemical synthesis of carbon materials with intriguing nanostructure and morphology. Macromol Chem Phys 213:1107–1131

    Google Scholar 

  205. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850

    Google Scholar 

  206. Dai L, Chang DW, Baek JB, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8:1130–1166

    ADS  Google Scholar 

  207. Taguchi A, Schüth F (2005) Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater 77:1–45

    Google Scholar 

  208. Balach J, Wu H, Polzer F, Kirmse H, Zhao Q, Wei Z, Yuan J (2013) Poly(ionic liquid)-derived nitrogen-doped hollow carbon spheres: synthesis and loading with Fe2O3 for high-performance lithium ion batteries. RSC Adv 3:7979–7986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibon Odriozola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Azcune, I., Genua, A., de Luzuriaga, A.R., Odriozola, I. (2015). Chapter Poly(Ionic Liquid)s and Nanoobjects. In: Mecerreyes, D. (eds) Applications of Ionic Liquids in Polymer Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44903-5_12

Download citation

Publish with us

Policies and ethics