Skip to main content

Shape Analysis and Description Using Real Functions

  • Conference paper
  • First Online:
Topological and Statistical Methods for Complex Data

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 2241 Accesses

Abstract

We discuss how the shape of an object can be analyzed according to the properties of real functions defined on it, and how these properties can be stored in compact and informative geometric/topological descriptors. As examples, we refer to Reeb graphs and persistence diagrams, encoding either the configuration of level sets or sub-level sets of functions. We then move to the case of vector-valued functions, encoding multi-dimensional properties of shapes, showing how this kind of information can be dealt with by means of persistence spaces. Experiments on the retrieval of textured 3D models are presented as a possible application of such tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anile, M.A., Falcidieno, B., Gallo, G., Spagnuolo, M., Spinello, S.: Modeling uncertain data with fuzzy B-splines. Fuzzy Sets Syst. 113(3), 397–410 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Boston (1999)

    Google Scholar 

  3. Bhatia, H., Norgard, G., Pascucci, V., Bremer, P.-T.: The Helmholtz-Hodge Decomposition - A Survey. IEEE Trans. Vis. Comput. Graph. 19(8), 1386–1404 (2013)

    Article  Google Scholar 

  4. Biasotti, S.: Topological coding of surfaces with boundary using Reeb graphs. Comput. Graph. Geom. 7(1), 31–45 (2005)

    Google Scholar 

  5. Biasotti, S., Falcidieno, B., Spagnuolo, M.: Extended Reeb Graphs for surface understanding and description. In: Borgefors, G., di Baja, G.S. (eds.) Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, vol. 1953, pp. 185–197. Springer, Berlin (2000)

    Chapter  Google Scholar 

  6. Biasotti, S., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C., Patanè, G., Spagnuolo, M.: 3D shape description and matching based on properties of real functions. In: EG 2007 Tutorial, pp. 949–998 (2007)

    Google Scholar 

  7. Biasotti, S., De Floriani, L., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C., Papaleo, L., Spagnuolo, M.: Describing shapes by geometrical-topological properties of real functions. ACM Comput. Surv. 40(4), 1–87 (2008)

    Article  Google Scholar 

  8. Biasotti, S., Cerri, A., Giorgi, D., Spagnuolo, M.: PHOG: photometric and geometric functions for textured shape retrieval. Comput. Graph. Forum 32(5), 13–22 (2013)

    Article  Google Scholar 

  9. Biasotti, S., Spagnuolo, M., Falcidieno, B.: Grouping real functions defined on 3D surfaces. Comput. Graph. 37(6), 608–619 (2013)

    Article  Google Scholar 

  10. Cerri, A., Landi, C.: The persistence space in multidimensional persistent homology. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, vol. 7749, pp. 180–191. Springer, Berlin (2013)

    Chapter  Google Scholar 

  11. Cerri, A., Landi, C.: Persistence space of vector-valued continuous functions. Technical Report IMATI no. 4/13 (2013)

    Google Scholar 

  12. Cerri, A., Biasotti, S., Abdelrahman, M., Angulo, J., Berger, K., Chevallier, L., El-Melegy, M.T., Farag, A.A., Lefebvre, F., Giachetti, A., Guermoud, H., Liu, Y.-J., Velasco-Forero, S., Vigouroux, J.-R., Xu, C.-X., Zhang, J.-B.: Shrec’13 track: retrieval on textured 3d models. In: Proceedings of Eurographics Workshop on 3D Object Retrieval, EG 3DOR, pp. 73–80 (2013)

    Google Scholar 

  13. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, Providence, 2010.

    Google Scholar 

  15. Fairchild, M.D.: Color Appearance Models, 2nd edn. Wiley, Chichester, (2005)

    Google Scholar 

  16. Falcidieno, B., Spagnuolo, M.: A shape abstraction paradigm for modeling geometry and semantics. In: Proceedings of the Computer Graphics International 1998, CGI ’98, pp. 646–656. IEEE Computer Society, Washington (1998)

    Google Scholar 

  17. Harvey, W., Rübel, O., Pascucci, V., Bremer, P.-T., Wang, Y.: Enhanced topology-sensitive clustering by reeb graph shattering. In: Topological Methods in Data Analysis and Visualization II, pp. 77–90. Springer, Berlin (2012)

    Google Scholar 

  18. Kanezaki, A., Harada, T., Kuniyoshi, Y.: Partial matching of real textured 3D objects using color cubic higher-order local auto-correlation features. Vis. Comput. 26(10), 1269–1281 (2010)

    Article  Google Scholar 

  19. Kimmel, R., Malladi, R., Sochen, N.: Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. Int. J. Comput. Vis. 39(2), 111–129 (2000)

    Article  MATH  Google Scholar 

  20. Liu, Y.-J., Zheng, Y.-F., Lv, L., Xuan, Y.-M., Fu, X.-L.: 3D model retrieval based on color + geometry signatures. Vis. Comput. 28(1), 75–86 (2012)

    Article  Google Scholar 

  21. Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 167–172 (2007)

    Article  Google Scholar 

  22. Reeb, G.: Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une fonction numérique. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 222, 847–849 (1946)

    MATH  MathSciNet  Google Scholar 

  23. Shinagawa, Y., Kunii, T.: Constructing a Reeb graph automatically from cross sections. IEEE Comput. Graph. Appl. 11, 44–51 (1991)

    Article  Google Scholar 

  24. Slater, D., Healey, G.: Combining color and geometric information for the illumination invariant recognition of 3-d objects. In: Proceedings of IEEE ICCV, pp. 563–568 (1995)

    Google Scholar 

  25. Tanaka, J., Weiskopf, D., Williams, P.: The role of color in high-level vision. Trends Cogn. Sci. 5, 211–215 (2001)

    Article  Google Scholar 

  26. Thompson, D.W.: On Growth and Form. Cambridge University Press, Cambridge (1942)

    MATH  Google Scholar 

  27. Thorstensen, N., Keriven, R.: Non-rigid shape matching using geometry and photometry. In: Proceedings of 9th Asian Conference on Computer Vision, pp. 644–654. Springer, Berlin (2010)

    Google Scholar 

  28. Weibull, J.: Evolutionary Game Theory. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  29. Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic graph theory. IEEE Trans. Pattern Anal. Mach. Intell. 7(27), 1112–1124 (2005)

    Article  Google Scholar 

  30. Zaharescu, A., Boyer, E., Horaud, R.: Keypoints and local descriptors of scalar functions on 2D manifolds. Int. J. Comput. Vis. 100(1), 78–98 (2012)

    Article  MATH  Google Scholar 

  31. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially funded by the EU project IQmulus under grant agreement no. FP7-ICT-2011-318787 and the CNR Flagship project INTEROMICS, InterOmics PB05, research unit WP 15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianca Falcidieno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Biasotti, S., Cerri, A., Spagnuolo, M., Falcidieno, B. (2015). Shape Analysis and Description Using Real Functions. In: Bennett, J., Vivodtzev, F., Pascucci, V. (eds) Topological and Statistical Methods for Complex Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44900-4_6

Download citation

Publish with us

Policies and ethics