Skip to main content

Piecewise Polynomial Monotonic Interpolation of 2D Gridded Data

  • Conference paper
  • First Online:
Topological and Statistical Methods for Complex Data

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

A method for interpolating monotone increasing 2D scalar data with a monotone piecewise cubic C1-continuous surface is presented. Monotonicity is a sufficient condition for a function to be free of critical points inside its domain. The standard axial monotonicity for tensor-product surfaces is however too restrictive. We therefore introduce a more relaxed monotonicity constraint. We derive sufficient conditions on the partial derivatives of the interpolating function to ensure its monotonicity. We then develop two algorithms to effectively construct a monotone C1 surface composed of cubic triangular Bézier surfaces interpolating a monotone gridded data set. Our method enables to interpolate given topological data such as minima, maxima and saddle points at the corners of a rectangular domain without adding spurious extrema inside the function domain. Numerical examples are given to illustrate the performance of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beatson, R.K.T., Ziegler, Z.: Monotonicity preserving surface interpolation. SIAM J. Numer. Anal. 22(2), 401–411 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. Carlson, R.E., Fritsch, F.N.: An algorithm for monotone piecewise bicubic interpolation. SIAM J. Numer. Anal. 26(1), 230–238 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Carnicer, J.M., Floater, M.S., Peña, J.M.: Linear convexity conditions for rectangular and triangular Bernstein-Bézier surfaces. Comput. Aided Geom. Des. 15(1), 27–38 (1997)

    Article  MATH  Google Scholar 

  4. Cavaretta Jr., A.S., Sharma, A.: Variation diminishing properties and convexity for the tensor product bernstein operator. In: Yadav, B.S., Singh, D. (eds.) Functional Analysis and Operator Theory. Lecture Notes in Mathematics, vol. 1511, pp. 18–32. Springer, Berlin/Heidelberg (1992)

    Chapter  Google Scholar 

  5. Delgado, J., Peòa, J.M.: Are rational Bézier surfaces monotonicity preserving? Comput. Aided Geom. Des. 24(5), 303–306 (2007)

    Article  MATH  Google Scholar 

  6. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse–Smale complexes for piecewise linear 2-manifolds. Discrete Comput. Geom. 30(1), 87–107 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Farin, G.E.: Triangular Bernstein-Bézier patches. Comput. Aided Geom. Des. 3(2), 83–127 (1986)

    Article  MathSciNet  Google Scholar 

  8. Farin, G.E.: Curves and Surfaces for Computer-Aided Geometric Design: A Practical Code, 4th edn. Academic, Orlando (1996)

    Google Scholar 

  9. Floater, M.S., Peña, J.M.: Tensor-product monotonicity preservation. Adv. Comput. Math. 9(3–4), 353–362 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Floater, M.S., Peña, J.M.: Monotonicity preservation on triangles. Math. Comput. 69(232), 1505–1519 (2000)

    Article  MATH  Google Scholar 

  11. Floater, M., Beccari, C., Cashman, T., Romani, L.: A smoothness criterion for monotonicity-preserving subdivision. Adv. Comput. Math. 39(1), 193–204 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Han, L., Schumaker, L.L.: Fitting monotone surfaces to scattered data using c1 piecewise cubics. SIAM J. Numer. Anal. 34(2), 569–585 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jüttler, B.: Surface fitting using convex tensor-product splines. J. Comput. Appl. Math. 84(1), 23–44 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kuijt, F., van Damme, R.: Monotonicity preserving interpolatory subdivision schemes. J. Comput. Appl. Math. 101(1–2), 203–229 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mainar, E., Peña, J.M.: Monotonicity preserving representations of non-polynomial surfaces. J. Comput. Appl. Math. 233(9), 2161–2169 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. McAllister, D.F., Passow, E., Roulier, J.A.: Algorithms for computing shape preserving spline interpolations to data. Math. Comput. 31(139), 717–725 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  17. Smale, S.: On gradient dynamical systems. Ann. Math. 74(1), 199–206 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  18. Strom, K.: On convolutions of b-splines. J. Comput. Appl. Math. 55(1), 1–29 (1994)

    Article  MathSciNet  Google Scholar 

  19. Willemans, K., Dierckx, P.: Smoothing scattered data with a monotone powell-sabin spline surface. Numer. Algorithms 12(1), 215–231 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges-Pierre Bonneau .

Editor information

Editors and Affiliations

Appendix—Sibson Split Interpolant

Appendix—Sibson Split Interpolant

Let D be a rectangular domain in \(\mathbb{R}^{2}\), regularly subdivided into rectangles \(D_{\mathit{ij}} = [x_{i},x_{i+1}] \times [y_{j},y_{j+1}]\), \(1 \leq i < n_{x},1 \leq j < n_{y}\) and the following ordinates z ij and gradients \(z_{\mathit{ij}}^{x},z_{\mathit{ij}}^{y}\) given at the grid points. Let \(h^{x} = x_{i+1} - x_{i},h^{y} = y_{j+1} - y_{j}\). Each rectangle is splitted into four sub-triangles by drawing both diagonals.

The Sibson split (cf. [7]) is a cubic C1-continuous function \(f: D \rightarrow \mathbb{R}\) interpolating the input data with

$$\displaystyle{f(x_{i},y_{i}) = z_{\mathit{ij}},\qquad f_{x}(x_{i},y_{i}) = z_{\mathit{ij}}^{x},\qquad f_{ y}(x_{i},y_{i}) = z_{\mathit{ij}}^{y},}$$

where each patch defined on D ij is composed of four cubic polynomials with in total 25 Bézier coefficients (see Fig. 4), computed uniquely as follows:

$$\displaystyle\begin{array}{rcl} c_{1}& =& z_{\mathit{ij}}\quad c_{2} = z_{i+1,j}\quad c_{3} = z_{i+1,j+1} {}\\ c_{4}& =& z_{i,j+1}\quad c_{5} = c_{1} + \frac{h^{x}} {3} z_{\mathit{ij}}^{x}\quad c_{ 6} = c_{2} -\frac{h^{x}} {3} z_{i+1,j}^{x} {}\\ c_{9}& =& c_{3} -\frac{h^{x}} {3} z_{i+1,j+1}^{x}\quad c_{ 10} = c_{4} + \frac{h^{x}} {3} z_{i,j+1}^{x}\quad c_{ 12} = c_{1} + \frac{h^{y}} {3} z_{\mathit{ij}}^{y} {}\\ c_{7}& =& c_{2} + \frac{h^{y}} {3} z_{i+1,j}^{y}\quad c_{ 8} = c_{3} -\frac{h^{y}} {3} z_{i+1,j+1}^{y}\quad c_{ 11} = c_{4} -\frac{h^{y}} {3} z_{i,j+1}^{x} {}\\ c_{13}& =& \frac{1} {2}(c_{5} + c_{12})\quad c_{14} = \frac{1} {2}(c_{6} + c_{7})\quad c_{15} = \frac{1} {2}(c_{8} + c_{9}) {}\\ c_{16}& =& \frac{1} {2}(c_{11} + c_{10})\quad c_{21} = \frac{1} {2}(c_{20} + c_{17})\quad c_{22} = \frac{1} {2}(c_{17} + c_{18}) {}\\ c_{23}& =& \frac{1} {2}(c_{18} + c_{19})\quad c_{24} = \frac{1} {2}(c_{19} + c_{20})\quad c_{25} = \frac{1} {2}(c_{21} + c_{23}) = \frac{1} {2}(c_{22} + c_{24}). {}\\ \end{array}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Allemand-Giorgis, L., Bonneau, GP., Hahmann, S., Vivodtzev, F. (2015). Piecewise Polynomial Monotonic Interpolation of 2D Gridded Data. In: Bennett, J., Vivodtzev, F., Pascucci, V. (eds) Topological and Statistical Methods for Complex Data. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44900-4_5

Download citation

Publish with us

Policies and ethics