Skip to main content

Models Involving One-Dimensional Convection-Diffusion

  • Chapter
  • First Online:
Modelling Electroanalytical Experiments by the Integral Equation Method

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 810 Accesses

Abstract

Electroanalytical models involving one-dimensional convection-diffusion transport are similar to models involving pure diffusion, discussed in Chap. 5, in that a separate concentration–production rate relationship exists for every dynamic distributed species. However, the interfacial species production rate may generally not vanish in the initial state of the system. Integral concentration–production rate relationships are obtainable, in particular, for convection-diffusion at dropping mercury electrodes; rotating disk electrodes; and channel or tubular electrodes (provided that the Singh–Dutt approximation is used). Algebraic concentration–production rate relationships exist at steady state, for rotating disk electrodes, and channel or tubular electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover Publications, New York

    Google Scholar 

  2. Aoki K, Osteryoung J (1980) Theory of differential pulse polarography at expanding or stationary planar electrodes for quasi-reversible or totally irreversible reactions. J Electroanal Chem 110:19–36

    CAS  Google Scholar 

  3. Compton RG, Unwin PR (1989) A critical assessment of the theories for linear sweep voltammetry of reversible electrode processes at a channel electrode. J Electroanal Chem 264:27–36

    Article  CAS  Google Scholar 

  4. Compton RG, Pilkington MBG, Stearn GM, Unwin PR (1987) Mass transport to channel and tubular electrodes: the “Singh and Dutt approximation”. J Electroanal Chem 238:43–66

    Article  CAS  Google Scholar 

  5. Delmastro JR, Smith DE (1967) Some considerations on the effect of alternating potential amplitude in AC polarography. J Electroanal Chem 14:261–268

    Article  CAS  Google Scholar 

  6. Dutt J, Singh T (1985) Linear sweep voltammetry at the tubular electrode. J Electroanal Chem 182:259–266

    Article  CAS  Google Scholar 

  7. Dutt J, Singh T (1986) Linear sweep voltammetry at the tubular graphite electrode. Part III. Quasi-reversible process. J Electroanal Chem 207:41–48

    CAS  Google Scholar 

  8. Filinovskii VYu, Kiryanov VA (1964) On the theory of non-stationary convective diffusion at the rotating disk electrode. Dokl Akad Nauk SSSR 156:1412–1415 (in Russian)

    CAS  Google Scholar 

  9. Girina GP, Filinovskii VYu, Feoktistov LG (1967) Dependence of the current on potential sweep rate and disk electrode rotation rate in the case of linearly changing potential. Elektrohim 3:941–945 (in Russian)

    CAS  Google Scholar 

  10. Komorsky Š, Lovrić M (1980) Simple EEE mechanism at DME. J Electroanal Chem 112:169–174

    Article  CAS  Google Scholar 

  11. Krylov VS, Babak VN (1971) Unsteady diffusion towards the rotating disk surface. Elektrohim 7:649–654 (in Russian)

    CAS  Google Scholar 

  12. Lovrić M, Branica M (1985) Drop life-time dependence of current density in differential pulse polarography. J Electroanal Chem 183:107–122

    Article  Google Scholar 

  13. Matsuda H (1957) Beiträge zur Theorie der polarographischen Stromstärke. Allgemeine Formel der diffusionsbedingten Stromstärke und ihre Anwendung. Z Elektrochem 61:489–506

    CAS  Google Scholar 

  14. Matsuda H (1958) Zur Theorie der Wechselspannungs-Polarographie. Z Elektrochem 62:977–989

    CAS  Google Scholar 

  15. Matsuda H (1967) A contribution to the theory of polarographic diffusion currents influenced by the adsorption of surface-active substances. Rev Polarogr 14:87–92

    CAS  Google Scholar 

  16. Matsuda H (1980) A contribution to the theory of pulse polarography. I. Theory of current–potential curves. Bull Chem Soc Jpn 53:3439–3446

    Article  CAS  Google Scholar 

  17. Matsuda H, Ayabe Y (1955) Theoretical analysis of polarographic waves. I. Reduction of simple metal ions. Bull Chem Soc Jpn 28:422–429

    Article  CAS  Google Scholar 

  18. Matsuda H, Ayabe Y (1956) Theoretical analysis of polarographic waves. II. Reduction of complex metal ions. Bull Chem Soc Jpn 29:134–140

    Article  CAS  Google Scholar 

  19. Matsuda H, Yamada Y, Kanamori K, Kudo Y, Takeda Y (1991) On the facilitation effect of neutral macrocyclic ligands on the ion transfer across the interface between aqueous and organic solutions. I. Theoretical equation of ion-transfer-polarographic current–potential curves and its experimental verification. Bull Chem Soc Jpn 64:1497–1508

    Article  CAS  Google Scholar 

  20. Niki K, Kobayashi Y, Matsuda H (1984) Determination of macroscopic standard potentials of a molecule with a reversible n-consecutive one-electron transfer process. Application to a tetra-heme protein: cytochrome c3. J Electroanal Chem 178:333–341

    Article  CAS  Google Scholar 

  21. Nişancioğlu K, Newman J (1974) Transient convective diffusion to a disk electrode. J Electroanal Chem 50:23–29

    Article  Google Scholar 

  22. Oldham KB (1969) A unified treatment of electrolysis at an expanding mercury electrode. Anal Chem 41:936–945

    Article  CAS  Google Scholar 

  23. Oldham KB (1991) Interrelation of current and concentration at electrodes. J Appl Electrochem 21:1068–1072

    Article  CAS  Google Scholar 

  24. Singh T, Dutt J (1985) Cyclic voltammetry at the tubular graphite electrode. Reversible process (theory). J Electroanal Chem 190:65–73

    Article  CAS  Google Scholar 

  25. Singh T, Dutt J (1985) Linear sweep voltammetry at the tubular graphite electrode. Part II. Totally irreversible process. J Electroanal Chem 196:35–42

    CAS  Google Scholar 

  26. Singh T, Dutt J, Kumari B, Dewan RK (1987) Cyclic voltammetry at the tubular electrode. Part II. Quasi-reversible and totally irreversible processes. J Electroanal Chem 238:33–41

    CAS  Google Scholar 

  27. Smutek M (1955) Kinetics of electrode processes. XIII. A contribution to the theory of slow electrode processes. Collect Cecoslov Chem Commun 20:247–251

    Article  CAS  Google Scholar 

  28. Valdes JL, Cheh HY (1984) The application of convolution potential sweep voltammetry at a rotating disc electrode to simple electron transfer kinetics. J Electroanal Chem 181:65–81

    Article  CAS  Google Scholar 

  29. Viswanathan K, Cheh HY (1979) The application of pulsed potential and pulsed current to a rotating disc electrode system. J Appl Electrochem 9:537–543

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bieniasz, L.K. (2015). Models Involving One-Dimensional Convection-Diffusion. In: Modelling Electroanalytical Experiments by the Integral Equation Method. Monographs in Electrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44882-3_6

Download citation

Publish with us

Policies and ethics