Advertisement

Modellierung und Simulation von Filtrationsprozessen

Chapter
  • 2.8k Downloads

Zusammenfassung

Innovative Filtrations- und Separationstechniken sind in vielen Fällen von wesentlicher Bedeutung bei der Entwicklung von hochwertigen Produkten bzw. effizienten Geräten oder wenn es gilt, eine möglichst hohe Lebensqualität zu gewährleisten. Es ist schwierig einen Industriebereich zu benennen, in dem Filter keine wichtige Rolle spielen. In einem üblichen PKW gibt es eine Vielzahl von Filtern. Andere Bereiche, die in höchstem Maße von der eingesetzten Filtertechnik abhängen, sind die Aufbereitung von Trink- und Brauchwasser sowie der Einsatz von Entstaubungsanlagen im Energie- und Produktionssektor. Der Filtrationsmarkt wächst schnell und dementsprechend hoch ist der Innovationsdruck bei der Produktentwicklung. Daher kommt in zunehmendem Umfang Computer Aided Engineering (CAE) bei der Produktauslegung zum Einsatz. Damit den Entwicklungsingenieuren auch hierfür geeignete CAE-Werkzeuge zur Verfügung stehen, ist viel an mathematischer Forschung erforderlich. Die Fest-Flüssig- und Fest-Gasförmig-Filtrationsprobleme, die hier betrachtet werden sollen, sind von Natur aus Multiskalen- und Multiphysikphänomene. Die Größen der Schmutzpartikel und der Fasern im Filtermaterial reichen vom Nanometerbereich bis hin zu mehreren hundert Mikrometern. Die Abmessungen von Filtergehäusen dagegen können von wenigen Millimetern bis hin zu mehreren Metern betragen. Zudem kann sich das Filtermaterial (Filtermedium) je nach Anwendungsfall wie ein starrer Körper verhalten oder verformen. Dieses Kapitel gibt einen Überblick über die industriellen Anforderungen bei der Filterauslegung und die mathematischen Herausforderungen bei der Modellierung und Simulation von Filtrationsvorgängen. Dabei werden die Herangehensweisen zur rechnergestützten Untersuchung der Filtrationsprozesse auf der mikroskopischen Ebene (Partikel- und Porenskala), auf der makroskopischen Ebene (Filterelement, Gehäuse) und deren Kopplung behandelt. Die Beiträge des Fraunhofer ITWM zu diesem Forschungsgebiet in Form von neuen Simulationsmethoden und Software werden kurz vorgestellt und ihre Bedeutung für die Praxis an Hand von Beispielen erfolgreicher Industrieanwendungen illustriert.

Literaturverzeichnis

Publikationen zum Thema des Fraunhofer ITWM

  1. 1.
    Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R.: Physics benchmarks – Part II: Computing Effective Properties. Comput. Geosci. 50, 33–43 (2013) CrossRefGoogle Scholar
  2. 2.
    Andrä, H., Iliev, O., Kabel, M., Lakdawala, Z., Kirsch, R., Starikovičius, V.: Modelling and simulation of filter media loading and of pleats deflection. In: Proceedings FILTECH Conference 2011, vol. I, pp. 480–486 (2011) Google Scholar
  3. 3.
    Beier, H., Vogel, C., Haase, J., Hunger, M., Schmalz, E., Sauer-Kunze, M., Bergmann, L., Lieberenz, K., Fuchs, H., Frijlink, J.J., Schmidt, G., Wiesmann, A., Durst, M., Best, W., Burmeister, A., Wiegmann, A., Latz, A., Rief, S., Steiner, K.: Vliesstoffe für technische anwendungen. In: Fuchs, H., Albrecht, W. (eds.) Vliesstoffe: Rohstoffe, Herstellung, Anwendung, Eigenschaften, Prüfung, pp. 539–637. Wiley-VCH, Weinheim (2012) CrossRefGoogle Scholar
  4. 4.
    Ciegis, R., Iliev, O., Lakdawala, Z.: On parallel numerical algorithms for simulating industrial filtration problems. Comput. Methods Appl. Math. 7(2), 118–134 (2007) MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dedering, M., Stausberg, W., Iliev, O., Lakdawala, Z., Ciegis, R., Starikovičius, V.: On new challenges for CFD simulation in filtration. In: Proceedings of the 10th World Filtration Congress (2008) Google Scholar
  6. 6.
    Iliev, D., Iliev, O., Kirsch, R., Dedering, M., Mikelić, A.: Modelling and simulation of fluid-porous structure interaction (FPSI) on the filter element scale. In: Proceedings Filtech 2013 Conference (2013). G16-03-138 Google Scholar
  7. 7.
    Iliev, O., Kirsch, R., Lakdawala, Z.: On some macroscopic models for depth filtration: analytical solutions and parameter identification. In: Proceedings Filtech Conference 2011 (2011) Google Scholar
  8. 8.
    Iliev, O., Kirsch, R., Lakdawala, Z., Starikovičius, V.: Numerical simulation of non-Darcy flow using filter element simulation toolbox (FiltEST). In: Proceedings Filtech 2013 Conference (2013). G18-02-148 Google Scholar
  9. 9.
    Iliev, O., Lakdawala, Z., Andrä, H., Kabel, M., Steiner, K., Starikovičius, V.: Interaction of fluid with porous structure in filteration processes: modelling and simulation of pleats deflection. In: Proc. Filtech Europa, vol. 2, pp. 27–31 (2009) Google Scholar
  10. 10.
    Iliev, O., Lakdawala, Z., Kirsch, R., Steiner, K., Toroshchin, E., Dedering, M., Starikovičius, V.: CFD simulations for better filter element design. In: Proceedings Filtech Conference 2011. Filtech Congress 2011 (2011) Google Scholar
  11. 11.
    Iliev, O., Lakdawala, Z., Printsypar, G.: On a multiscale approach for filter efficiency simulations. Comput. Math. Appl. 67(12), 2171–2184 (2014) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Iliev, O., Lakdawala, Z., Starikovičius, V.: On a numerical subgrid upscaling algorithm for Stokes–Brinkman equations. Comput. Math. Appl. 65(3), 435–448 (2013) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Iliev, O., Laptev, V.: On numerical simulation of flow trough oil filters. Comput. Vis. Sci. 6, 139–146 (2004) CrossRefzbMATHGoogle Scholar
  14. 14.
    Iliev, O., Lazarov, R., Willems, J.: Variational multiscale finite element method for flows in highly porous media. Multiscale Model. Simul. 9(4), 1350–1372 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Iliev, O., Printsypar, G., Rief, S.: A two-dimensional model of the pressing section of a paper machine including dynamic capillary effects. J. Eng. Math. 01/2013, 81–107 (2013) CrossRefGoogle Scholar
  16. 16.
    Iliev, O., Rybak, I.: On numerical upscaling for flows in heterogeneous porous media. Comput. Methods Appl. Math. 8, 60–76 (2008) MathSciNetzbMATHGoogle Scholar
  17. 17.
    Iliev, O., Schindelin, A., Wiegmann, A.: Computer aided development of hydraulic filter elements – from theory to patent and products. In: Berns, K., Schnindler, C., Dreßler, K., Jörg, B., Kalmar, R., Hirth, J. (eds.) Proceedings of the 1st Commercial Vehicle Technology (CVT 2010). Commercial Vehicle Technology 2010, pp. 68–75 (2010) Google Scholar
  18. 18.
    Kabel, M., Andrä, H., Hahn, F., Lehmann, M.: Simulating the compression of filter materials. In: Proceedings Filtech 2013 Conference (2013). G16-01-057 Google Scholar
  19. 19.
    Khan, F., Enzmann, F., Kersten, M., Wiegmann, A., Steiner, K.: 3d simulation of the permeability tensor in a soil aggregate on basis of nanotomographic imaging and lbe solver. J. Soils Sediments 12(1), 86–96 (2012) CrossRefGoogle Scholar
  20. 20.
    Latz, A., Rief, S., Wiegmann, A.: Research note: computer simulation of air filtration including electric surface charges in 3-dimesional fibrous microstructures. Filtration 6(2), 169–172 (2006) Google Scholar
  21. 21.
    Latz, A., Wiegmann, A.: Filtermaterialdesign per software. Laboratory IT User Service 1/04 (2004) Google Scholar
  22. 22.
    Ohser, J., Schladitz, K.: 3d images of material structures – processing and analysis. Imaging Microsc. 11(4), 21 (2009) CrossRefGoogle Scholar
  23. 23.
    Prill, T., Schladitz, K., Jeulin, D.: Morphological segmentation of FIB-SEM data of highly porous media. J. Microsc. 250(2), 77–87 (2013) CrossRefGoogle Scholar
  24. 24.
    Probst-Schendzielorz, S., Rief, S., Wiegmann, A., Andrä, H., Schmitt, M.: Simulation of press dewatering. In: Progress in Paper Physics Seminar 2011, pp. 301–302 (2011) Google Scholar
  25. 25.
    Proceedings of 2nd Annual Meeting of Bulgarian Section of SIAM: Modelling and Simulation of Multiscale Problems in Industrial Filtration Processes (2007) Google Scholar
  26. 26.
    Rief, S., Iliev, O., Kehrwald, D., Latz, A., Steiner, K., Wiegmann, A.: Simulation und virtuelles Design von Filtermedien und Filterelementen. In: Durst, G.M., Klein, M. (eds.) Filtration in Fahrzeugen. Expert-Verlag, Renningen (2006) Google Scholar
  27. 27.
    Rief, S., Wiegmann, A., Latz, A.: Computer simulation of air filtration including electric surface charges in three-dimensional fibrous micro structures. Math. Model. Anal. 10(3), 287–304 (2005) MathSciNetGoogle Scholar
  28. 28.
    Schmidt, K., Rief, S., Wiegmann, A.: Simulation of dpf media, soot deposition and pressure drop evolution. In: Proc. Filtech Europa, vol. 2, pp. 74–80 (2009) Google Scholar
  29. 29.
    Spahn, J., Andrä, H., Kabel, M., Müller, R.: A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms. Comput. Methods Appl. Mech. Eng. 268, 871–883 (2014). ISSN 0045-7825 CrossRefzbMATHGoogle Scholar
  30. 30.
    Starikovičius, V., Ciegis, R., Iliev, O., Lakdawala, Z.: A parallel solver for the 3d simulation of flows through oil filters. In: Parallel Scientific Computing and Optimization. Springer Optimization and Its Applications, vol. 27, pp. 181–191 (2008) CrossRefGoogle Scholar
  31. 31.
    Thömmes, G., Becker, J., Junk, M., Vaikuntam, A.K., Kehrwald, D., Klar, A., Steiner, K., Wiegmann, A.: A lattice Boltzmann method for immiscible multiphase flow simulations using the level set method. J. Comput. Phys. 228(4), 1139–1156 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Wiegmann, A.: GeoDict. Fraunhofer ITWM Kaiserslautern. www.geodict.com
  33. 33.
    Wiegmann, A.: Computation of the permeability of porous materials from their microstructure by FFF-Stokes. Tech. Rep. 129, Fraunhofer ITWM (2007) Google Scholar
  34. 34.
    Wiegmann, A., Becker, J.: Virtual characterization of the pore structure of nonwoven. In: Proceedings of the International Nonwoven Technical Conference (2007) Google Scholar

Dissertationen zum Thema am Fraunhofer ITWM

  1. 35.
    Buck, M.: Overlapping domain decomposition preconditioners for multi-phase elastic composites. Ph.D. thesis, Technical University Kaiserslautern (2013) Google Scholar
  2. 36.
    Kronsbein, C.: On selected efficient numerical methods for multiscale problems with stochastic coefficients. Ph.D. thesis, Technical University Kaiserslautern (2013) Google Scholar
  3. 37.
    Lakdawala, Z.: On efficient algorithms for filtration related multiscale problems. Ph.D. thesis, Technical University Kaiserslautern (2010) Google Scholar
  4. 38.
    Laptev, V.: Numerical solution of coupled flow in plain and porous media. Ph.D. thesis, Technical University Kaiserslautern (2004) Google Scholar
  5. 39.
    Nagapetyan, T.: Multilevel Monte Carlo method for distribution function approximation with application to asymmetric flow field flow fractionation. Ph.D. thesis, Technical University Kaiserslautern (2014) Google Scholar
  6. 40.
    Naumovich, A.: Efficient numerical methods for the Biot poroelasticity system in multilayered domains. Ph.D. thesis, Technical University Kaiserslautern (2007) Google Scholar
  7. 41.
    Niedziela, D.: On numerical simulations of viscoelastic fluids. Ph.D. thesis, Technical University Kaiserslautern (2006) Google Scholar
  8. 42.
    Printsypar, G.: Mathematical modeling and simulation of two-phase flow in porous media with application to the pressing section of a paper machine. Ph.D. thesis, Technical University Kaiserslautern (2012) Google Scholar
  9. 43.
    Rief, S.: Nonlinear flow in porous media – numerical solution of the Navier–Stokes system with two pressures and application to paper making. Ph.D. thesis, Technical University Kaiserslautern (2005) Google Scholar
  10. 44.
    Schmidt, K.: Dreidimensionale Modellierung von Filtermedien und Simulation der Partikelabscheidung auf der Mikroskala. Ph.D. thesis, Technical University Kaiserslautern (2011) Google Scholar
  11. 45.
    Schmidt, S.: On numerical simulation of granular flow. Ph.D. thesis, Technical University Kaiserslautern (2009) Google Scholar
  12. 46.
    Strautins, U.: Flow-driven orientation dynamics in two classes of fibre suspensions. Ph.D. thesis, Technical University Kaiserslautern (2008) Google Scholar
  13. 47.
    Willems, J.: Numerical upscaling for multiscale flow problems. Ph.D. thesis, Technical University Kaiserslautern (2009) Google Scholar
  14. 48.
    Zemerli, C.: Continuum mechanical modelling of granular systems. Ph.D. thesis, Technical University Kaiserslautern (2013) Google Scholar

Weitere Literatur

  1. 49.
    Abboud, N.M., Corapcioglu, M.Y.: Numerical solution and sensitivity analysis of filter cake permeability and resistance to model parameters. Transp. Porous Media 10(3), 235–255 (1993) CrossRefGoogle Scholar
  2. 50.
    Angot, P.: A fictitious domain model for the Stokes–Brinkman problem with jump embedded boundary conditions. C. R. Math. 348(11–12), 697–702 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 51.
    Arbogast, T., Bryant, S.: A two-scale numerical subgrid technique for waterflood simulations. SPE J. 7(4), 446–457 (2002) CrossRefGoogle Scholar
  4. 52.
    Balhoff, M., Mikelić, A., Wheeler, M.: Polynomial filtration laws for low Reynolds number flows through porous media. Transp. Porous Media 81(1), 35–60 (2010) MathSciNetCrossRefGoogle Scholar
  5. 53.
    Barree, R., Conway, M.: Beyond beta factors: a complete model for Darcy, Forchheimer and trans-Forchheimer flow in porous media. In: 2004 Annual Technical Conference and Exhibition, Paper SPE 89325 (2004) Google Scholar
  6. 54.
    Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic, Dordrecht (1990) CrossRefGoogle Scholar
  7. 55.
    Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967) CrossRefGoogle Scholar
  8. 56.
    Biot, M.: General theory of threedimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941) CrossRefzbMATHGoogle Scholar
  9. 57.
    Biot, M.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26(2), 182–185 (1955) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 58.
    Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1, 27–34 (1949) CrossRefzbMATHGoogle Scholar
  11. 59.
    Brown, R., Wake, D.: Loading filters with monodisperse aerosols: macroscopic treatment. J. Aerosol Sci. 30(2), 227–234 (1999) CrossRefGoogle Scholar
  12. 60.
    Chen, M., Durlofsky, L., Gerristen, M., Wen, X.: A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour. 26(10), 1041–1060 (2003) CrossRefGoogle Scholar
  13. 61.
    Chorin, A.: Numerical solution of Navier–Stokes equation. In: Mathematics of Computation, vol. 22, pp. 745–760 (1968) Google Scholar
  14. 62.
    Darcy, H.: Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris (1856) Google Scholar
  15. 63.
    Dedering, M.: Filter medium for an oil filter. Patent DE102008027663 (2009) Google Scholar
  16. 64.
    Efendiev, Y., Hou, T.: Multiscale Finite Element Methods. Springer, Berlin (2009) zbMATHGoogle Scholar
  17. 65.
    Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89 (1952) Google Scholar
  18. 66.
    Espedal, M., Fasano, A., Mikelić, A.: Filtration in Porous Media and Industrial Application. Springer, Berlin (1998) Google Scholar
  19. 67.
    Ferziger Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (1999) CrossRefzbMATHGoogle Scholar
  20. 68.
    Fletcher, C.: Computational Techniques for Fluid Dynamics. Springer, Berlin (1991) zbMATHGoogle Scholar
  21. 69.
    Forchheimer, P.: Wasserbewegung durch Boden. Z. Ver. Deutsch. Ing. 45, 1782 (1901) Google Scholar
  22. 70.
    Gresho, P., Sani, R.: Incompressible Flow and the Finite Element Method. Advection–Diffusion and Isothermal Laminar Flow, vol. 1. Wiley, Chichester (1998). In collaboration with M.S. Engelman zbMATHGoogle Scholar
  23. 71.
    Griebel, M., Klitz, M.: Homogenisation and numerical simulation of flow in geometries with textile microstructures. Multiscale Model. Simul. 8(4), 1439–1460 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 72.
    Hornung, U.: Homogenization and Porous Media. Springer, New York (1996) Google Scholar
  25. 73.
    Ives, K.: Rapid filtration. Water Res. 4, 201–223 (1970) CrossRefGoogle Scholar
  26. 74.
    Iwasaki, T.: Some notes on sand filtration. J. Am. Wat. Wks. Ass. 29(10), 1591–1602 (1937) Google Scholar
  27. 75.
    Jackson, G.W., James, D.F.: The permeability of fibrous porous media. Can. J. Chem. Eng. 64(3), 364–374 (1986) CrossRefGoogle Scholar
  28. 76.
    Jäger, W., Mikelić, A.: On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 23(3), 403–465 (1996) zbMATHGoogle Scholar
  29. 77.
    Jenny, P., Lunati, I.: Multi-scale finite-volume method for elliptic problems with heterogeneous coefficients and source terms. PAMM 6(1), 485–486 (2006) MathSciNetCrossRefGoogle Scholar
  30. 78.
    Johnson, R.W. (ed.): The Handbook of Fluid Dynamics. CRC Press, Boca Raton (1998) zbMATHGoogle Scholar
  31. 79.
    Kasper, G., Schollmeier, S., Meyer, J.: Structure and density of deposits formed on filter fibers by inertial particle deposition and bounce. J. Aerosol Sci. 41(12), 1167–1182 (2010) CrossRefGoogle Scholar
  32. 80.
    Kaviany, M.: Principles of Heat Transfer in Porous Media. Mechanical Engineering Series. Springer, Berlin (1995) CrossRefzbMATHGoogle Scholar
  33. 81.
    Kirsch, A., Stechkina, I.: The theory of aerosol filtration with fibrous filters. In: Shaw, D. (ed.) Fundamentals of Aerosol Science. Wiley, New York (1978) Google Scholar
  34. 82.
    Marciniak-Czochra, A., Mikelić, A.: A rigorous derivation of the equations for the clamped Biot-Kirchhoff-Love poroelastic plate. To appear in Discrete Cont. Dyn. Systems D (2013) Google Scholar
  35. 83.
    Mints, D.M.: Kinetics of the filtration of low concentration water suspensions. Dokl. Akad. Nauk SSSR 78(2), 315–318 (1951) MathSciNetGoogle Scholar
  36. 84.
    Morris, J.: An Overview of the Method of Smoothed Particle Hydrodynamics (1995) Google Scholar
  37. 85.
    Ochoa-Tapia, J., Whitaker, S.: Momentum-transfer at the boundary between a porous-medium and a homogeneous fluid. Int. J. Heat Mass Transf. 38, 2635–2655 (1995) CrossRefzbMATHGoogle Scholar
  38. 86.
    Ohser, J., Mücklich, F.: Statistical Analysis of Microstructures in Materials Science. Wiley, New York (2000) zbMATHGoogle Scholar
  39. 87.
    Olivier, J., Vaxelaire, J., Vorobiev, E.: Modelling of cake filtration: an overview. Sep. Sci. Technol. 42(8), 1667–1700 (2007) CrossRefGoogle Scholar
  40. 88.
    Podgórski, A.: Macroscopic model of two-stage aerosol filtration in a fibrous filter without reemission of deposits. J. Aerosol Sci. 29, S929–S930 (1998) CrossRefGoogle Scholar
  41. 89.
    Rhie, C., Chow, W.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21(11), 1525–1532 (1983) CrossRefzbMATHGoogle Scholar
  42. 90.
    Saleh, A., Hosseini, S., Tafreshi, H.V., Pourdeyhimi, B.: 3-d microscale simulation of dust-loading in thin flat-sheet filters: a comparison with 1-d macroscale simulations. Chem. Eng. Sci. 99, 284–291 (2013) CrossRefGoogle Scholar
  43. 91.
    Schindelin, A., Schadt, W.: Gewelltes oder gefaltetes Flachmaterial. Patent DE102007040892 A1 (2009) Google Scholar
  44. 92.
    Silvester, D., Elman, H., Kay, D., Wathen, A.: Efficient preconditioning of the linearized Navier–Stokes equation. J. Comput. Appl. Math. 128, 261–279 (2001) MathSciNetCrossRefzbMATHGoogle Scholar
  45. 93.
    Taber, L.A.: A theory for transversal deflection of poroelastic plates. J. Appl. Mech. 59, 628–634 (1992) CrossRefzbMATHGoogle Scholar
  46. 94.
    Tien, C.: Introduction to Cake Filtration: Analyses, Experiments and Applications. Elsevier, Amsterdam (2006) Google Scholar
  47. 95.
    Tien, C., Payatakes, A.C.: Advances in deep bed filtration. AIChE J. 25(5), 737–759 (1979) CrossRefGoogle Scholar
  48. 96.
    Turek, S.: Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational Approach. Lecture Notes in Computational Science and Engineering, vol. 6. Springer, Berlin (1999) CrossRefzbMATHGoogle Scholar
  49. 97.
    Versteeg, H., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, Upper Saddle River (2007) Google Scholar
  50. 98.
    Wang, J., Chen, D., Pui, D.: Modeling of filtration efficiency of nanoparticles in standard filter media. In: Maynard, A., Pui, D. (eds.) Nanotechnology and Occupational Health, pp. 109–115. Springer, Netherlands (2007) CrossRefGoogle Scholar
  51. 99.
    Ward, J.: Turbulent flow in porous media. J. Hyd. Div. ASCE 90, 1–12 (1964) Google Scholar
  52. 100.
    Weinan, E., Engquist, B.: The heterognous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003) MathSciNetCrossRefzbMATHGoogle Scholar
  53. 101.
    Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, Berlin (2001) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Fraunhofer-Institut für Techno- und WirtschaftsmathematikKaiserslauternDeutschland

Personalised recommendations