Skip to main content

Modellierung und Simulation von Filtrationsprozessen

  • Chapter
Mathematik im Fraunhofer-Institut

Zusammenfassung

Innovative Filtrations- und Separationstechniken sind in vielen Fällen von wesentlicher Bedeutung bei der Entwicklung von hochwertigen Produkten bzw. effizienten Geräten oder wenn es gilt, eine möglichst hohe Lebensqualität zu gewährleisten. Es ist schwierig einen Industriebereich zu benennen, in dem Filter keine wichtige Rolle spielen. In einem üblichen PKW gibt es eine Vielzahl von Filtern. Andere Bereiche, die in höchstem Maße von der eingesetzten Filtertechnik abhängen, sind die Aufbereitung von Trink- und Brauchwasser sowie der Einsatz von Entstaubungsanlagen im Energie- und Produktionssektor. Der Filtrationsmarkt wächst schnell und dementsprechend hoch ist der Innovationsdruck bei der Produktentwicklung. Daher kommt in zunehmendem Umfang Computer Aided Engineering (CAE) bei der Produktauslegung zum Einsatz. Damit den Entwicklungsingenieuren auch hierfür geeignete CAE-Werkzeuge zur Verfügung stehen, ist viel an mathematischer Forschung erforderlich. Die Fest-Flüssig- und Fest-Gasförmig-Filtrationsprobleme, die hier betrachtet werden sollen, sind von Natur aus Multiskalen- und Multiphysikphänomene. Die Größen der Schmutzpartikel und der Fasern im Filtermaterial reichen vom Nanometerbereich bis hin zu mehreren hundert Mikrometern. Die Abmessungen von Filtergehäusen dagegen können von wenigen Millimetern bis hin zu mehreren Metern betragen. Zudem kann sich das Filtermaterial (Filtermedium) je nach Anwendungsfall wie ein starrer Körper verhalten oder verformen. Dieses Kapitel gibt einen Überblick über die industriellen Anforderungen bei der Filterauslegung und die mathematischen Herausforderungen bei der Modellierung und Simulation von Filtrationsvorgängen. Dabei werden die Herangehensweisen zur rechnergestützten Untersuchung der Filtrationsprozesse auf der mikroskopischen Ebene (Partikel- und Porenskala), auf der makroskopischen Ebene (Filterelement, Gehäuse) und deren Kopplung behandelt. Die Beiträge des Fraunhofer ITWM zu diesem Forschungsgebiet in Form von neuen Simulationsmethoden und Software werden kurz vorgestellt und ihre Bedeutung für die Praxis an Hand von Beispielen erfolgreicher Industrieanwendungen illustriert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    IBS-Filtran GmbH, Morsbach, Germany, www.ibs-filtran.com.

  2. 2.

    ARGO-HYTOS GmbH, Kraichtal-Menzingen, Germany, www.argo-hytos.com.

Literaturverzeichnis

Publikationen zum Thema des Fraunhofer ITWM

  1. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R.: Physics benchmarks – Part II: Computing Effective Properties. Comput. Geosci. 50, 33–43 (2013)

    Article  Google Scholar 

  2. Andrä, H., Iliev, O., Kabel, M., Lakdawala, Z., Kirsch, R., Starikovičius, V.: Modelling and simulation of filter media loading and of pleats deflection. In: Proceedings FILTECH Conference 2011, vol. I, pp. 480–486 (2011)

    Google Scholar 

  3. Beier, H., Vogel, C., Haase, J., Hunger, M., Schmalz, E., Sauer-Kunze, M., Bergmann, L., Lieberenz, K., Fuchs, H., Frijlink, J.J., Schmidt, G., Wiesmann, A., Durst, M., Best, W., Burmeister, A., Wiegmann, A., Latz, A., Rief, S., Steiner, K.: Vliesstoffe für technische anwendungen. In: Fuchs, H., Albrecht, W. (eds.) Vliesstoffe: Rohstoffe, Herstellung, Anwendung, Eigenschaften, Prüfung, pp. 539–637. Wiley-VCH, Weinheim (2012)

    Chapter  Google Scholar 

  4. Ciegis, R., Iliev, O., Lakdawala, Z.: On parallel numerical algorithms for simulating industrial filtration problems. Comput. Methods Appl. Math. 7(2), 118–134 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Dedering, M., Stausberg, W., Iliev, O., Lakdawala, Z., Ciegis, R., Starikovičius, V.: On new challenges for CFD simulation in filtration. In: Proceedings of the 10th World Filtration Congress (2008)

    Google Scholar 

  6. Iliev, D., Iliev, O., Kirsch, R., Dedering, M., Mikelić, A.: Modelling and simulation of fluid-porous structure interaction (FPSI) on the filter element scale. In: Proceedings Filtech 2013 Conference (2013). G16-03-138

    Google Scholar 

  7. Iliev, O., Kirsch, R., Lakdawala, Z.: On some macroscopic models for depth filtration: analytical solutions and parameter identification. In: Proceedings Filtech Conference 2011 (2011)

    Google Scholar 

  8. Iliev, O., Kirsch, R., Lakdawala, Z., Starikovičius, V.: Numerical simulation of non-Darcy flow using filter element simulation toolbox (FiltEST). In: Proceedings Filtech 2013 Conference (2013). G18-02-148

    Google Scholar 

  9. Iliev, O., Lakdawala, Z., Andrä, H., Kabel, M., Steiner, K., Starikovičius, V.: Interaction of fluid with porous structure in filteration processes: modelling and simulation of pleats deflection. In: Proc. Filtech Europa, vol. 2, pp. 27–31 (2009)

    Google Scholar 

  10. Iliev, O., Lakdawala, Z., Kirsch, R., Steiner, K., Toroshchin, E., Dedering, M., Starikovičius, V.: CFD simulations for better filter element design. In: Proceedings Filtech Conference 2011. Filtech Congress 2011 (2011)

    Google Scholar 

  11. Iliev, O., Lakdawala, Z., Printsypar, G.: On a multiscale approach for filter efficiency simulations. Comput. Math. Appl. 67(12), 2171–2184 (2014)

    Article  MathSciNet  Google Scholar 

  12. Iliev, O., Lakdawala, Z., Starikovičius, V.: On a numerical subgrid upscaling algorithm for Stokes–Brinkman equations. Comput. Math. Appl. 65(3), 435–448 (2013)

    Article  MathSciNet  Google Scholar 

  13. Iliev, O., Laptev, V.: On numerical simulation of flow trough oil filters. Comput. Vis. Sci. 6, 139–146 (2004)

    Article  MATH  Google Scholar 

  14. Iliev, O., Lazarov, R., Willems, J.: Variational multiscale finite element method for flows in highly porous media. Multiscale Model. Simul. 9(4), 1350–1372 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iliev, O., Printsypar, G., Rief, S.: A two-dimensional model of the pressing section of a paper machine including dynamic capillary effects. J. Eng. Math. 01/2013, 81–107 (2013)

    Article  Google Scholar 

  16. Iliev, O., Rybak, I.: On numerical upscaling for flows in heterogeneous porous media. Comput. Methods Appl. Math. 8, 60–76 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Iliev, O., Schindelin, A., Wiegmann, A.: Computer aided development of hydraulic filter elements – from theory to patent and products. In: Berns, K., Schnindler, C., Dreßler, K., Jörg, B., Kalmar, R., Hirth, J. (eds.) Proceedings of the 1st Commercial Vehicle Technology (CVT 2010). Commercial Vehicle Technology 2010, pp. 68–75 (2010)

    Google Scholar 

  18. Kabel, M., Andrä, H., Hahn, F., Lehmann, M.: Simulating the compression of filter materials. In: Proceedings Filtech 2013 Conference (2013). G16-01-057

    Google Scholar 

  19. Khan, F., Enzmann, F., Kersten, M., Wiegmann, A., Steiner, K.: 3d simulation of the permeability tensor in a soil aggregate on basis of nanotomographic imaging and lbe solver. J. Soils Sediments 12(1), 86–96 (2012)

    Article  Google Scholar 

  20. Latz, A., Rief, S., Wiegmann, A.: Research note: computer simulation of air filtration including electric surface charges in 3-dimesional fibrous microstructures. Filtration 6(2), 169–172 (2006)

    Google Scholar 

  21. Latz, A., Wiegmann, A.: Filtermaterialdesign per software. Laboratory IT User Service 1/04 (2004)

    Google Scholar 

  22. Ohser, J., Schladitz, K.: 3d images of material structures – processing and analysis. Imaging Microsc. 11(4), 21 (2009)

    Article  Google Scholar 

  23. Prill, T., Schladitz, K., Jeulin, D.: Morphological segmentation of FIB-SEM data of highly porous media. J. Microsc. 250(2), 77–87 (2013)

    Article  Google Scholar 

  24. Probst-Schendzielorz, S., Rief, S., Wiegmann, A., Andrä, H., Schmitt, M.: Simulation of press dewatering. In: Progress in Paper Physics Seminar 2011, pp. 301–302 (2011)

    Google Scholar 

  25. Proceedings of 2nd Annual Meeting of Bulgarian Section of SIAM: Modelling and Simulation of Multiscale Problems in Industrial Filtration Processes (2007)

    Google Scholar 

  26. Rief, S., Iliev, O., Kehrwald, D., Latz, A., Steiner, K., Wiegmann, A.: Simulation und virtuelles Design von Filtermedien und Filterelementen. In: Durst, G.M., Klein, M. (eds.) Filtration in Fahrzeugen. Expert-Verlag, Renningen (2006)

    Google Scholar 

  27. Rief, S., Wiegmann, A., Latz, A.: Computer simulation of air filtration including electric surface charges in three-dimensional fibrous micro structures. Math. Model. Anal. 10(3), 287–304 (2005)

    MathSciNet  Google Scholar 

  28. Schmidt, K., Rief, S., Wiegmann, A.: Simulation of dpf media, soot deposition and pressure drop evolution. In: Proc. Filtech Europa, vol. 2, pp. 74–80 (2009)

    Google Scholar 

  29. Spahn, J., Andrä, H., Kabel, M., Müller, R.: A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms. Comput. Methods Appl. Mech. Eng. 268, 871–883 (2014). ISSN 0045-7825

    Article  MATH  Google Scholar 

  30. Starikovičius, V., Ciegis, R., Iliev, O., Lakdawala, Z.: A parallel solver for the 3d simulation of flows through oil filters. In: Parallel Scientific Computing and Optimization. Springer Optimization and Its Applications, vol. 27, pp. 181–191 (2008)

    Chapter  Google Scholar 

  31. Thömmes, G., Becker, J., Junk, M., Vaikuntam, A.K., Kehrwald, D., Klar, A., Steiner, K., Wiegmann, A.: A lattice Boltzmann method for immiscible multiphase flow simulations using the level set method. J. Comput. Phys. 228(4), 1139–1156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wiegmann, A.: GeoDict. Fraunhofer ITWM Kaiserslautern. www.geodict.com

  33. Wiegmann, A.: Computation of the permeability of porous materials from their microstructure by FFF-Stokes. Tech. Rep. 129, Fraunhofer ITWM (2007)

    Google Scholar 

  34. Wiegmann, A., Becker, J.: Virtual characterization of the pore structure of nonwoven. In: Proceedings of the International Nonwoven Technical Conference (2007)

    Google Scholar 

Dissertationen zum Thema am Fraunhofer ITWM

  1. Buck, M.: Overlapping domain decomposition preconditioners for multi-phase elastic composites. Ph.D. thesis, Technical University Kaiserslautern (2013)

    Google Scholar 

  2. Kronsbein, C.: On selected efficient numerical methods for multiscale problems with stochastic coefficients. Ph.D. thesis, Technical University Kaiserslautern (2013)

    Google Scholar 

  3. Lakdawala, Z.: On efficient algorithms for filtration related multiscale problems. Ph.D. thesis, Technical University Kaiserslautern (2010)

    Google Scholar 

  4. Laptev, V.: Numerical solution of coupled flow in plain and porous media. Ph.D. thesis, Technical University Kaiserslautern (2004)

    Google Scholar 

  5. Nagapetyan, T.: Multilevel Monte Carlo method for distribution function approximation with application to asymmetric flow field flow fractionation. Ph.D. thesis, Technical University Kaiserslautern (2014)

    Google Scholar 

  6. Naumovich, A.: Efficient numerical methods for the Biot poroelasticity system in multilayered domains. Ph.D. thesis, Technical University Kaiserslautern (2007)

    Google Scholar 

  7. Niedziela, D.: On numerical simulations of viscoelastic fluids. Ph.D. thesis, Technical University Kaiserslautern (2006)

    Google Scholar 

  8. Printsypar, G.: Mathematical modeling and simulation of two-phase flow in porous media with application to the pressing section of a paper machine. Ph.D. thesis, Technical University Kaiserslautern (2012)

    Google Scholar 

  9. Rief, S.: Nonlinear flow in porous media – numerical solution of the Navier–Stokes system with two pressures and application to paper making. Ph.D. thesis, Technical University Kaiserslautern (2005)

    Google Scholar 

  10. Schmidt, K.: Dreidimensionale Modellierung von Filtermedien und Simulation der Partikelabscheidung auf der Mikroskala. Ph.D. thesis, Technical University Kaiserslautern (2011)

    Google Scholar 

  11. Schmidt, S.: On numerical simulation of granular flow. Ph.D. thesis, Technical University Kaiserslautern (2009)

    Google Scholar 

  12. Strautins, U.: Flow-driven orientation dynamics in two classes of fibre suspensions. Ph.D. thesis, Technical University Kaiserslautern (2008)

    Google Scholar 

  13. Willems, J.: Numerical upscaling for multiscale flow problems. Ph.D. thesis, Technical University Kaiserslautern (2009)

    Google Scholar 

  14. Zemerli, C.: Continuum mechanical modelling of granular systems. Ph.D. thesis, Technical University Kaiserslautern (2013)

    Google Scholar 

Weitere Literatur

  1. Abboud, N.M., Corapcioglu, M.Y.: Numerical solution and sensitivity analysis of filter cake permeability and resistance to model parameters. Transp. Porous Media 10(3), 235–255 (1993)

    Article  Google Scholar 

  2. Angot, P.: A fictitious domain model for the Stokes–Brinkman problem with jump embedded boundary conditions. C. R. Math. 348(11–12), 697–702 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arbogast, T., Bryant, S.: A two-scale numerical subgrid technique for waterflood simulations. SPE J. 7(4), 446–457 (2002)

    Article  Google Scholar 

  4. Balhoff, M., Mikelić, A., Wheeler, M.: Polynomial filtration laws for low Reynolds number flows through porous media. Transp. Porous Media 81(1), 35–60 (2010)

    Article  MathSciNet  Google Scholar 

  5. Barree, R., Conway, M.: Beyond beta factors: a complete model for Darcy, Forchheimer and trans-Forchheimer flow in porous media. In: 2004 Annual Technical Conference and Exhibition, Paper SPE 89325 (2004)

    Google Scholar 

  6. Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic, Dordrecht (1990)

    Book  Google Scholar 

  7. Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  8. Biot, M.: General theory of threedimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  MATH  Google Scholar 

  9. Biot, M.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26(2), 182–185 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1, 27–34 (1949)

    Article  MATH  Google Scholar 

  11. Brown, R., Wake, D.: Loading filters with monodisperse aerosols: macroscopic treatment. J. Aerosol Sci. 30(2), 227–234 (1999)

    Article  Google Scholar 

  12. Chen, M., Durlofsky, L., Gerristen, M., Wen, X.: A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour. 26(10), 1041–1060 (2003)

    Article  Google Scholar 

  13. Chorin, A.: Numerical solution of Navier–Stokes equation. In: Mathematics of Computation, vol. 22, pp. 745–760 (1968)

    Google Scholar 

  14. Darcy, H.: Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris (1856)

    Google Scholar 

  15. Dedering, M.: Filter medium for an oil filter. Patent DE102008027663 (2009)

    Google Scholar 

  16. Efendiev, Y., Hou, T.: Multiscale Finite Element Methods. Springer, Berlin (2009)

    MATH  Google Scholar 

  17. Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48, 89 (1952)

    Google Scholar 

  18. Espedal, M., Fasano, A., Mikelić, A.: Filtration in Porous Media and Industrial Application. Springer, Berlin (1998)

    Google Scholar 

  19. Ferziger Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  20. Fletcher, C.: Computational Techniques for Fluid Dynamics. Springer, Berlin (1991)

    MATH  Google Scholar 

  21. Forchheimer, P.: Wasserbewegung durch Boden. Z. Ver. Deutsch. Ing. 45, 1782 (1901)

    Google Scholar 

  22. Gresho, P., Sani, R.: Incompressible Flow and the Finite Element Method. Advection–Diffusion and Isothermal Laminar Flow, vol. 1. Wiley, Chichester (1998). In collaboration with M.S. Engelman

    MATH  Google Scholar 

  23. Griebel, M., Klitz, M.: Homogenisation and numerical simulation of flow in geometries with textile microstructures. Multiscale Model. Simul. 8(4), 1439–1460 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hornung, U.: Homogenization and Porous Media. Springer, New York (1996)

    Google Scholar 

  25. Ives, K.: Rapid filtration. Water Res. 4, 201–223 (1970)

    Article  Google Scholar 

  26. Iwasaki, T.: Some notes on sand filtration. J. Am. Wat. Wks. Ass. 29(10), 1591–1602 (1937)

    Google Scholar 

  27. Jackson, G.W., James, D.F.: The permeability of fibrous porous media. Can. J. Chem. Eng. 64(3), 364–374 (1986)

    Article  Google Scholar 

  28. Jäger, W., Mikelić, A.: On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 23(3), 403–465 (1996)

    MATH  Google Scholar 

  29. Jenny, P., Lunati, I.: Multi-scale finite-volume method for elliptic problems with heterogeneous coefficients and source terms. PAMM 6(1), 485–486 (2006)

    Article  MathSciNet  Google Scholar 

  30. Johnson, R.W. (ed.): The Handbook of Fluid Dynamics. CRC Press, Boca Raton (1998)

    MATH  Google Scholar 

  31. Kasper, G., Schollmeier, S., Meyer, J.: Structure and density of deposits formed on filter fibers by inertial particle deposition and bounce. J. Aerosol Sci. 41(12), 1167–1182 (2010)

    Article  Google Scholar 

  32. Kaviany, M.: Principles of Heat Transfer in Porous Media. Mechanical Engineering Series. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  33. Kirsch, A., Stechkina, I.: The theory of aerosol filtration with fibrous filters. In: Shaw, D. (ed.) Fundamentals of Aerosol Science. Wiley, New York (1978)

    Google Scholar 

  34. Marciniak-Czochra, A., Mikelić, A.: A rigorous derivation of the equations for the clamped Biot-Kirchhoff-Love poroelastic plate. To appear in Discrete Cont. Dyn. Systems D (2013)

    Google Scholar 

  35. Mints, D.M.: Kinetics of the filtration of low concentration water suspensions. Dokl. Akad. Nauk SSSR 78(2), 315–318 (1951)

    MathSciNet  Google Scholar 

  36. Morris, J.: An Overview of the Method of Smoothed Particle Hydrodynamics (1995)

    Google Scholar 

  37. Ochoa-Tapia, J., Whitaker, S.: Momentum-transfer at the boundary between a porous-medium and a homogeneous fluid. Int. J. Heat Mass Transf. 38, 2635–2655 (1995)

    Article  MATH  Google Scholar 

  38. Ohser, J., Mücklich, F.: Statistical Analysis of Microstructures in Materials Science. Wiley, New York (2000)

    MATH  Google Scholar 

  39. Olivier, J., Vaxelaire, J., Vorobiev, E.: Modelling of cake filtration: an overview. Sep. Sci. Technol. 42(8), 1667–1700 (2007)

    Article  Google Scholar 

  40. Podgórski, A.: Macroscopic model of two-stage aerosol filtration in a fibrous filter without reemission of deposits. J. Aerosol Sci. 29, S929–S930 (1998)

    Article  Google Scholar 

  41. Rhie, C., Chow, W.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21(11), 1525–1532 (1983)

    Article  MATH  Google Scholar 

  42. Saleh, A., Hosseini, S., Tafreshi, H.V., Pourdeyhimi, B.: 3-d microscale simulation of dust-loading in thin flat-sheet filters: a comparison with 1-d macroscale simulations. Chem. Eng. Sci. 99, 284–291 (2013)

    Article  Google Scholar 

  43. Schindelin, A., Schadt, W.: Gewelltes oder gefaltetes Flachmaterial. Patent DE102007040892 A1 (2009)

    Google Scholar 

  44. Silvester, D., Elman, H., Kay, D., Wathen, A.: Efficient preconditioning of the linearized Navier–Stokes equation. J. Comput. Appl. Math. 128, 261–279 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Taber, L.A.: A theory for transversal deflection of poroelastic plates. J. Appl. Mech. 59, 628–634 (1992)

    Article  MATH  Google Scholar 

  46. Tien, C.: Introduction to Cake Filtration: Analyses, Experiments and Applications. Elsevier, Amsterdam (2006)

    Google Scholar 

  47. Tien, C., Payatakes, A.C.: Advances in deep bed filtration. AIChE J. 25(5), 737–759 (1979)

    Article  Google Scholar 

  48. Turek, S.: Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational Approach. Lecture Notes in Computational Science and Engineering, vol. 6. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  49. Versteeg, H., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, Upper Saddle River (2007)

    Google Scholar 

  50. Wang, J., Chen, D., Pui, D.: Modeling of filtration efficiency of nanoparticles in standard filter media. In: Maynard, A., Pui, D. (eds.) Nanotechnology and Occupational Health, pp. 109–115. Springer, Netherlands (2007)

    Chapter  Google Scholar 

  51. Ward, J.: Turbulent flow in porous media. J. Hyd. Div. ASCE 90, 1–12 (1964)

    Google Scholar 

  52. Weinan, E., Engquist, B.: The heterognous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, Berlin (2001)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Iliev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iliev, O., Kirsch, R., Lakdawala, Z., Rief, S., Steiner, K. (2015). Modellierung und Simulation von Filtrationsprozessen. In: Neunzert, H., Prätzel-Wolters, D. (eds) Mathematik im Fraunhofer-Institut. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44877-9_7

Download citation

Publish with us

Policies and ethics