Advertisement

Virtuelle Produktion von Filamenten und Vliesstoffen

Chapter
  • 2.7k Downloads

Zusammenfassung

Die Virtualisierung der Produktion von Filamenten und Vliesstoffen wird am Fraunhofer ITWM seit vielen Jahren mit einem breiten Spektrum von Industriekunden voran getrieben. Eingebettet in das Themenfeld der Fluid–Struktur-Interaktion bietet dieser Anwendungsbereich vielfältige mathematische Herausforderungen, da die Komplexität der betrachteten Prozesse keine Standardsimulationen erlaubt. In mehreren Schlüsselaspekten hat das Fraunhofer ITWM eigene Modelle und Werkzeuge entwickelt, so dass heute simulationsbasierte Beiträge zur Auslegung und Steuerung der Prozesse geleistet werden können. Dabei wurden durch neue Modellierungsansätze, wie turbulente aerodynamische Widerstandsmodelle für die Filamentdynamik und stochastische Ersatzmodelle für die Vliesbildung, interessante Themenfelder für die Angewandte Mathematik angestoßen. Ausgehend von der Cosserat-Theorie gibt der vorliegende Beitrag einen geschlossenen Überblick zu Modellen, Algorithmen und Softwarebausteinen. Der erreichte Stand wird an den industriellen Anwendungen zum Spunbond-Prozess und zum Rotationsspinnen von Glaswolle demonstriert.

Notes

Danksagung

Die in diesem Beitrag gezeigten Simulationsergebnisse beruhen auf der Arbeit der in Abschn. 3 genannten Mitarbeiter der Abteilung Transportvorgänge am Fraunhofer ITWM. Ihnen gilt unser besonderer Dank. Wesentliche Arbeiten der Autoren wurden unterstützt durch die Deutsche Forschungsgemeinschaft (DFG), WE 2003/3-1, WE 2003/4-1, MA 4526/2-1 und das Bundesministerium für Bildung und Forschung (BMBF), Verbundprojekt ProFil, 05M10WEA, 05M10AMB, Verbundprojekt OPAL, 05M13WEA, 05M13AMD.

Literaturverzeichnis

Publikationen der Autoren

  1. 1.
    Arne, W., Marheineke, N., Meister, A., Wegener, R.: Numerical analysis of Cosserat rod and string models for viscous jets in rotational spinning processes. Math. Models Methods Appl. Sci. 20(10), 1941–1965 (2010) MathSciNetzbMATHGoogle Scholar
  2. 2.
    Arne, W., Marheineke, N., Meister, A., Wegener, R.: Finite volume approach for the instationary Cosserat rod model describing the spinning of viscous jets, arXiv:1207.0731 (2012)
  3. 3.
    Arne, W., Marheineke, N., Schnebele, J., Wegener, R.: Fluid-fiber-interactions in rotational spinning process of glass wool manufacturing. J. Math. Ind. 1, 2 (2011) MathSciNetGoogle Scholar
  4. 4.
    Arne, W., Marheineke, N., Wegener, R.: Asymptotic transition of Cosserat rod to string models for curved viscous inertial jets. Math. Models Methods Appl. Sci. 21(10), 1987–2018 (2011) MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bonilla, L.L., Götz, T., Klar, A., Marheineke, N., Wegener, R.: Hydrodynamic limit for the Fokker–Planck equation describing fiber lay-down models. SIAM J. Appl. Math. 68(3), 648–665 (2007) MathSciNetGoogle Scholar
  6. 6.
    Götz, T., Klar, A., Marheineke, N., Wegener, R.: A stochastic model and associated Fokker–Planck equation for the fiber lay-down process in nonwoven production processes. SIAM J. Appl. Math. 67(6), 1704–1717 (2007) MathSciNetzbMATHGoogle Scholar
  7. 7.
    Götz, T., Klar, A., Unterreiter, A., Wegener, R.: Numerical evidence for the non-existence of solutions to the equations describing rotational fiber spinning. Math. Models Methods Appl. Sci. 18(10), 1829–1844 (2008) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Grothaus, M., Klar, A., Maringer, J., Stilgenbauer, P., Wegener, R.: Application of a three-dimensional fiber lay-down model to non-woven production processes. J. Math. Ind. 4, 4 (2014) Google Scholar
  9. 9.
    Hietel, D., Wegener, R.: Simulation of spinning and laydown processes. Technical Textiles 3, 145–148 (2005) Google Scholar
  10. 10.
    Hübsch, F., Marheineke, N., Ritter, K., Wegener, R.: Random field sampling for a simplified model of melt-blowing considering turbulent velocity fluctuations. J. Stat. Phys. 150(6), 1115–1137 (2013) MathSciNetzbMATHGoogle Scholar
  11. 11.
    Klar, A., Marheineke, N., Wegener, R.: Hierarchy of mathematical models for production processes of technical textiles. Z. Angew. Math. Mech. 89, 941–961 (2009) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Klar, A., Maringer, J., Wegener, R.: A 3d model for fiber lay-down in nonwoven production processes. Math. Models Methods Appl. Sci. 22(9), 1250020 (2012) MathSciNetGoogle Scholar
  13. 13.
    Klar, A., Maringer, J., Wegener, R.: A smooth 3d model for fiber lay-down in nonwoven production processes. Kinet. Relat. Models. 5(1), 57–112 (2012) MathSciNetGoogle Scholar
  14. 14.
    Lorenz, M., Marheineke, N., Wegener, R.: On simulations of spinning processes with a stationary one-dimensional upper convected Maxwell model. J. Math. Ind. 4, 2 (2014) Google Scholar
  15. 15.
    Marheineke, N., Liljo, J., Mohring, J., Schnebele, J., Wegener, R.: Multiphysics and multimethods problem of rotational glass fiber melt-spinning. Int. J. Numer. Anal. Model. B 3(3), 330–344 (2012) MathSciNetzbMATHGoogle Scholar
  16. 16.
    Marheineke, N., Wegener, R.: Fiber dynamics in turbulent flows: General modeling framework. SIAM J. Appl. Math. 66(5), 1703–1726 (2006) MathSciNetzbMATHGoogle Scholar
  17. 17.
    Marheineke, N., Wegener, R.: Fiber dynamics in turbulent flows: Specific Taylor drag. SIAM J. Appl. Math. 68(1), 1–23 (2007) MathSciNetzbMATHGoogle Scholar
  18. 18.
    Marheineke, N., Wegener, R.: Asymptotic model for the dynamics of curved viscous fibers with surface tension. J. Fluid Mech. 622, 345–369 (2009) MathSciNetzbMATHGoogle Scholar
  19. 19.
    Marheineke, N., Wegener, R.: Modeling and application of a stochastic drag for fiber dynamics in turbulent flows. Int. J. Multiph. Flow 37, 136–148 (2011) Google Scholar
  20. 20.
    Panda, S., Marheineke, N., Wegener, R.: Systematic derivation of an asymptotic model for the dynamics of curved viscous fibers. Math. Methods Appl. Sci. 31, 1153–1173 (2008) MathSciNetzbMATHGoogle Scholar
  21. 21.
    Tiwari, S., Antonov, S., Hietel, D., Kuhnert, J., Olawsky, F., Wegener, R.: A meshfree method for simulations of interactions between fluids and flexible structures. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations III. Lecture Notes in Computational Science and Engineering, vol. 57, pp. 249–264. Springer, Berlin (2006) Google Scholar

Dissertationen zum Thema am Fraunhofer ITWM

  1. 22.
    Arne, W.: Viskose Jets in rotatorischen Spinnprozessen. Ph.D. thesis, Universität Kassel (2012) Google Scholar
  2. 23.
    Dhadwal, R.: Fibre spinning: Model analysis. Ph.D. thesis, Technische Universität Kaiserslautern (2005) Google Scholar
  3. 24.
    Leithäuser, C.: Controllability of shape-dependent operators and constrained shape optimization for polymer distributors. Ph.D. thesis, Technische Universität Kaiserslautern (2013) Google Scholar
  4. 25.
    Lorenz, M.: On a viscoelastic fibre model – Asymptotics and numerics. Ph.D. thesis, Technische Universität Kaiserslautern (2013) Google Scholar
  5. 26.
    Marheineke, N.: Turbulent fibers – On the motion of long, flexible fibers in turbulent flows. Ph.D. thesis, Technische Universität Kaiserslautern (2005) Google Scholar
  6. 27.
    Maringer, J.: Stochastic and deterministic models for fiber lay-down. Ph.D. thesis, Technische Universität Kaiserslautern (2013) Google Scholar
  7. 28.
    Panda, S.: The dynamics of viscous fibers. Ph.D. thesis, Technische Universität Kaiserslautern (2006) Google Scholar
  8. 29.
    Repke, S.: Adjoint-based optimization approaches for stationary free surface flows. Ph.D. thesis, Technische Universität Kaiserslautern (2011) Google Scholar
  9. 30.
    Schröder, S.: Stochastic methods for fiber-droplet collisions in flow processes. Ph.D. thesis, Technische Universität Kaiserslautern (2013) Google Scholar

Weitere Literatur

  1. 31.
    Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (2006) Google Scholar
  2. 32.
    Audoly, B., Clauvelin, N., Brun, P.T., Bergou, M., Grinspun, E., Wardetzky, M.: A discrete geometric approach for simulating the dynamics of thin viscous threads. J. Comput. Phys. 253, 18–49 (2013) MathSciNetGoogle Scholar
  3. 33.
    Audoly, B., Pomeau, Y.: Elasticity and Geometry. Oxford University Press, Oxford (2010) zbMATHGoogle Scholar
  4. 34.
    Barrett, J.W., Knezevic, D.J., Süli, E.: Kinetic Models of Dilute Polymers: Analysis, Approximation and Computation. Nećas Center for Mathematical Modeling, Prague (2009) Google Scholar
  5. 35.
    Batchelor, G.K.: Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44(3), 419–440 (1970) MathSciNetzbMATHGoogle Scholar
  6. 36.
    Bechtel, S.E., Forest, M.G., Holm, D.D., Lin, K.J.: One-dimensional closure models for three-dimensional incompressible viscoelastic free jets: von Karman flow geometry and elliptical cross-section. J. Fluid Mech. 196, 241–262 (1988) MathSciNetzbMATHGoogle Scholar
  7. 37.
    Bonilla, L.L., Klar, A., Martin, S.: Higher order averaging of linear Fokker–Planck equations with periodic forcing. SIAM J. Appl. Math. 72(4), 1315–1342 (2012) MathSciNetzbMATHGoogle Scholar
  8. 38.
    Bonilla, L.L., Klar, A., Martin, S.: Higher order averaging of Fokker–Planck equations for nonlinear fiber lay-down processes. SIAM J. Appl. Math. 74(2), 366–391 (2014) MathSciNetzbMATHGoogle Scholar
  9. 39.
    Chiu-Webster, S., Lister, J.R.: The fall of a viscous thread onto a moving surface: a fluid-mechanical sewing machine. J. Fluid Mech. 569, 89–111 (2006) MathSciNetzbMATHGoogle Scholar
  10. 40.
    Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann, Paris (1909) Google Scholar
  11. 41.
    Cox, R.G.: The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech. 44(4), 791–810 (1970) zbMATHGoogle Scholar
  12. 42.
    Decent, S.P., King, A.C., Simmons, M.J.H., Parau, E.I., Wallwork, I.M., Gurney, C.J., Uddin, J.: The trajectory and stability of a spiralling liquid jet: Viscous theory. Appl. Math. Model. 33(12), 4283–4302 (2009) MathSciNetzbMATHGoogle Scholar
  13. 43.
    Desvilettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous entropy-dissipating systems: The linear Fokker–Planck equation. Commun. Pure Appl. Math. 54, 1–42 (2001) Google Scholar
  14. 44.
    Dewynne, J.N., Ockendon, J.R., Wilmott, P.: A systematic derivation of the leading-order equations for extensional flows in slender geometries. J. Fluid Mech. 244, 323–338 (1992) MathSciNetzbMATHGoogle Scholar
  15. 45.
    Doulbeault, J., Klar, A., Mouhot, C., Schmeiser, C.: Exponential rate of convergence to equilibrium for a model describing fiber lay-down processes. Appl. Math. Res. Express 2013, 165–175 (2013) Google Scholar
  16. 46.
    Doulbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for linear kinetic equations conserving mass, arXiv:1005.1495 (2010)
  17. 47.
    Eggers, J.: Nonlinear dynamics and breakup of free-surface flow. Rev. Mod. Phys. 69, 865–929 (1997) zbMATHGoogle Scholar
  18. 48.
    Eggers, J., Dupont, T.: Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech. 262, 205–221 (2001) MathSciNetGoogle Scholar
  19. 49.
    Elliott, F., Majda, A.J.: A new algorithm with plane waves and wavelets for random velocity fields with many spatial scales. J. Comput. Phys. 117, 146–162 (1995) MathSciNetzbMATHGoogle Scholar
  20. 50.
    Entov, V.M., Yarin, A.L.: The dynamics of thin liquid jets in air. J. Fluid Mech. 140, 91–111 (1984) zbMATHGoogle Scholar
  21. 51.
    Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2002) zbMATHGoogle Scholar
  22. 52.
    Forest, M.G., Wang, Q.: Dynamics of slender viscoelastic free jets. SIAM J. Appl. Math. 54(4), 996–1032 (1994) MathSciNetzbMATHGoogle Scholar
  23. 53.
    Forest, M.G., Wang, Q., Bechtel, S.E.: 1d models for thin filaments of liquid crystalline polymers: Coupling of orientation and flow in the stability of simple solutions. Physics D 99(4), 527–554 (2000) Google Scholar
  24. 54.
    Frisch, U.: Turbulence. The Legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge (1995) zbMATHGoogle Scholar
  25. 55.
    Geyling, F.T., Homsey, G.M.: Extensional instabilities of the glass fiber drawing process. Glass Technol. 21, 95–102 (1980) Google Scholar
  26. 56.
    Gidaspow, D.: Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academic Press, San Diego (1994) zbMATHGoogle Scholar
  27. 57.
    Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D., Périaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow. J. Comput. Phys. 169, 363–426 (2001) MathSciNetzbMATHGoogle Scholar
  28. 58.
    Gospodinov, P., Roussinov, V.: Nonlinear instability during the isothermal drawing of optical fibers. Int. J. Multiph. Flow 19, 1153–1158 (1993) zbMATHGoogle Scholar
  29. 59.
    Grothaus, M., Klar, A.: Ergodicity and rate of convergence for a non-sectorial fiber lay-down process. SIAM J. Math. Anal. 40(3), 968–983 (2008) MathSciNetzbMATHGoogle Scholar
  30. 60.
    Grothaus, M., Klar, A., Maringer, J., Stilgenbauer, P.: Geometry, mixing properties and hypocoercivity of a degenerate diffusion arising in technical textile industry. arXiv:1203.4502 (2012)
  31. 61.
    Grothaus, M., Stilgenbauer, P.: Geometric Langevin equations on submanifolds and applications to the stochastic melt-spinning process of nonwovens and biology. Stoch. Dyn. 13(4), 1350001 (2013) MathSciNetGoogle Scholar
  32. 62.
    Hagen, T.C.: On viscoelastic fluids in elongation. Adv. Math. Res. 1, 187–205 (2002) MathSciNetGoogle Scholar
  33. 63.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, 2nd edn. Nonstiff Problems. Springer, Berlin (2009) Google Scholar
  34. 64.
    Hartmann, S., Meister, A., Schäfer, M., Turek, S. (eds.): Fluid-Structure Interaction – Theory, Numerics and Application. Kassel University Press, Kassel (2009) Google Scholar
  35. 65.
    Herty, M., Klar, A., Motsch, S., Olawsky, F.: A smooth model for fiber lay-down processes and its diffusion approximations. Kinet. Relat. Models 2(3), 489–502 (2009) MathSciNetzbMATHGoogle Scholar
  36. 66.
    Hlod, A., Aarts, A.C.T., van de Ven, A.A.F., Peletier, M.A.: Three flow regimes of viscous jet falling onto a moving surface. IMA J. Appl. Math. 77(2), 196–219 (2012) MathSciNetzbMATHGoogle Scholar
  37. 67.
    Hoerner, S.F.: Fluid-Dynamic Drag. Practical Information on Aerodynamic Drag and Hydrodynamic Resistance. (1965) Published by the author. Obtainable from ISVA Google Scholar
  38. 68.
    Howell, P.D., Siegel, M.: The evolution of a slender non-axisymmetric drop in an extensional flow. J. Fluid Mech. 521, 155–180 (2004) MathSciNetzbMATHGoogle Scholar
  39. 69.
    Jung, P., Leyendecker, S., Linn, J., Ortiz, M.: A discrete mechanics approach to Cosserat rod theory – Part I: Static equilibria. Int. J. Numer. Methods Eng. 85, 31–60 (2010) MathSciNetGoogle Scholar
  40. 70.
    Keller, J.B., Rubinow, S.I.: Slender-body theory for slow viscous flow. J. Fluid Mech. 75(4), 705–714 (1976) zbMATHGoogle Scholar
  41. 71.
    Kirchhoff, G.: Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. J. Reine Angew. Math. 56, 285–316 (1859) zbMATHGoogle Scholar
  42. 72.
    Kolb, M., Savov, M., Wübker, A.: (Non-)ergodicity of a degenerate diffusion modeling the fiber lay down process. SIAM J. Math. Anal. 45(1), 1–13 (2013) MathSciNetzbMATHGoogle Scholar
  43. 73.
    Kurbanmuradov, O., Sabelfeld, K.: Stochastic spectral and Fourier-wavelet methods for vector Gaussian random fields. Monte Carlo Methods Appl. 12(5–6), 395–445 (2006) MathSciNetzbMATHGoogle Scholar
  44. 74.
    Kutoyants, Y.: Statistical Inference for Ergodic Diffusion Processes. Springer, London (2004) zbMATHGoogle Scholar
  45. 75.
    Lamb, H.: On the uniform motion of a sphere through a viscous fluid. Philos. Mag. 6(21), 113–121 (1911) Google Scholar
  46. 76.
    Launder, B.E., Spalding, B.I.: Mathematical Models of Turbulence. Academic Press, London (1972) zbMATHGoogle Scholar
  47. 77.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1927) zbMATHGoogle Scholar
  48. 78.
    Lu, Q.Q.: An approach to modeling particle motion in turbulent flows – I. Homogeneous isotropic turbulence. Atmospheric Enviroment 29(3), 423–436 (1995) Google Scholar
  49. 79.
    Maddocks, J.H.: Stability of nonlinearly elastic rods. Arch. Ration. Mech. Anal. 85(4), 311–354 (1984) MathSciNetzbMATHGoogle Scholar
  50. 80.
    Maddocks, J.H., Dichmann, D.J.: Conservation laws in the dynamics of rods. J. Elast. 34, 83–96 (1994) MathSciNetzbMATHGoogle Scholar
  51. 81.
    Mahadevan, L., Keller, J.B.: Coiling of flexible ropes. Proc. R. Soc. Lond. A 452, 1679–1694 (1996) MathSciNetzbMATHGoogle Scholar
  52. 82.
    Majda, A.J.: Random shearing direction models for isotropic turbulent diffusion. J. Stat. Phys. 75(5–6), 1153–1165 (1994) zbMATHGoogle Scholar
  53. 83.
    Malkan, S.R.: An overview of spunbonding and meltblowing technologies. Tappi J. 78(6), 185–190 (1995) Google Scholar
  54. 84.
    Matovich, M.A., Pearson, J.R.A.: Spinning a molten threadline. Steady-state isothermal viscous flows. Ind. Eng. Chem. Fundam. 8(3), 512–520 (1969) Google Scholar
  55. 85.
    Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005) MathSciNetGoogle Scholar
  56. 86.
    Pearson, J.R.A.: Mechanics of Polymer Processing. Elsevier, New York (1985) Google Scholar
  57. 87.
    Pearson, J.R.A., Matovich, M.A.: Spinning a molten threadline Stability. Ind. Eng. Chem. Fundam. 8(3), 605–609 (1969) Google Scholar
  58. 88.
    Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002) MathSciNetzbMATHGoogle Scholar
  59. 89.
    Pinchuk, L.S., Goldade, V.A., Makarevich, A.V., Kestelman, V.N.: Melt Blowing: Equipment, Technology and Polymer Fibrous Materials. Springer Series in Materials Processing. Springer, Berlin (2002) Google Scholar
  60. 90.
    Pismen, L.M., Nir, A.: On the motion of suspended particles in stationary homogeneous turbulence. J. Fluid Mech. 84, 193–206 (1978) MathSciNetzbMATHGoogle Scholar
  61. 91.
    Renardy, M.: Mathematical analysis of viscoelastic flows. Annu. Rev. Fluid Mech. 21, 21–36 (1989) MathSciNetGoogle Scholar
  62. 92.
    Ribe, N.M.: Coiling of viscous jets. Proc. R. Soc. Lond. A 2051, 3223–3239 (2004) MathSciNetGoogle Scholar
  63. 93.
    Ribe, N.M., Habibi, M., Bonn, D.: Stability of liquid rope coiling. Phys. Fluids 18, 084102 (2006) MathSciNetGoogle Scholar
  64. 94.
    Ribe, N.M., Lister, J.R., Chiu-Webster, S.: Stability of a dragged viscous thread: Onset of ‘stitching’ in a fluid-mechanical ‘sewing machine’. Phys. Fluids 18, 124105 (2006) Google Scholar
  65. 95.
    Rubin, M.B.: Cosserat Theories. Kluwer, Dordrecht (2000) zbMATHGoogle Scholar
  66. 96.
    Schewe, G.: On the force fluctuations acting on a circular cylinder in cross-flow from subcritical up to transcritical Reynolds numbers. J. Fluid Mech. 133, 265–285 (1983) Google Scholar
  67. 97.
    Schlichting, H.: Grenzschicht-Theorie. Verlag G. Braun, Karlsruhe (1982) zbMATHGoogle Scholar
  68. 98.
    Schultz, W.W., Davis, S.H.: One-dimensional liquid fibres. J. Rheol. 26, 331–345 (1982) zbMATHGoogle Scholar
  69. 99.
    Shah, F.T., Pearson, J.R.A.: On the stability of non-isothermal fibre spinning. Ind. Eng. Chem. Fundam. 11, 145–149 (1972) Google Scholar
  70. 100.
    Simo, J.C., Vu-Quoc, L.: Three-dimensional finite strain rod model. Part I: Computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986) zbMATHGoogle Scholar
  71. 101.
    Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions – a geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66, 125–161 (1988) MathSciNetzbMATHGoogle Scholar
  72. 102.
    Stokes, Y.M., Tuck, E.O.: The role of inertia in extensional fall of viscous drop. J. Fluid Mech. 498, 205–225 (2004) MathSciNetzbMATHGoogle Scholar
  73. 103.
    Sumer, B.M., Fredsoe, J.: Hydrodynamics Around Cylindrical Structures. World Scientific, New Jersey (2006) zbMATHGoogle Scholar
  74. 104.
    Taylor, G.I.: Analysis of the swimming of long and narrow animals. Proc. R. Soc. Lond. A 214, 158–183 (1952) zbMATHGoogle Scholar
  75. 105.
    Tiwari, S., Kuhnert, J.: Finite pointset method based on the projection method for simulations of the incompressible Navier–Stokes equations. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 26, pp. 373–387. Springer, Berlin (2003) Google Scholar
  76. 106.
    Tomotika, S., Aoi, T.: An expansion formula for the drag on a circular cylinder moving through a viscous fluid at small Reynolds number. Q. J. Mech. Appl. Math. 4, 401–406 (1951) MathSciNetzbMATHGoogle Scholar
  77. 107.
    Tomotika, S., Aoi, T., Yosinobu, H.: On the forces acting on a circular cylinder set obliquely in a uniform stream at low values of Reynolds number. Proc. R. Soc. Lond. A 219(1137), 233–244 (1953) MathSciNetzbMATHGoogle Scholar
  78. 108.
    VDI-Gesellschaft: VDI-Wärmeatlas, 10th edn. Springer, Berlin (2006) Google Scholar
  79. 109.
    Wallwork, I.M., Decent, S.P., King, A.C., Schulkes, R.M.S.M.: The trajectory and stability of a spiralling liquid jet. Part 1. Inviscid theory. J. Fluid Mech. 459, 43–65 (2002) MathSciNetzbMATHGoogle Scholar
  80. 110.
    Whitman, A.B., DeSilva, C.N.: An exact solution in a nonlinear theory of rods. J. Elast. 4, 265–280 (1974) zbMATHGoogle Scholar
  81. 111.
    Yarin, A.L.: Free Liquid Jets and Films: Hydrodynamics and Rheology. Longman, New York (1993) zbMATHGoogle Scholar
  82. 112.
    Yarin, A.L., Gospodinov, P., Gottlieb, O., Graham, M.D.: Newtonian glass fiber drawing: Chaotic variation of the cross-sectional radius. Phys. Fluids 11(11), 3201–3208 (1999) zbMATHGoogle Scholar
  83. 113.
    Zdravkovich, M.M.: Flow Around Circular Cylinders. Fundamentals, vol. 1. Oxford University Press, New York (1997) zbMATHGoogle Scholar
  84. 114.
    Ziabicki, A., Kawai, H.: High Speed Melt Spinning. Wiley, New York (1985) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Fraunhofer-Institut für Techno- und WirtschaftsmathematikKaiserslauternDeutschland
  2. 2.FAU Erlangen-NürnbergLehrstuhl Angewandte Mathematik 1ErlangenDeutschland

Personalised recommendations