Skip to main content

Virtuelle Produktion von Filamenten und Vliesstoffen

  • Chapter
Mathematik im Fraunhofer-Institut

Zusammenfassung

Die Virtualisierung der Produktion von Filamenten und Vliesstoffen wird am Fraunhofer ITWM seit vielen Jahren mit einem breiten Spektrum von Industriekunden voran getrieben. Eingebettet in das Themenfeld der Fluid–Struktur-Interaktion bietet dieser Anwendungsbereich vielfältige mathematische Herausforderungen, da die Komplexität der betrachteten Prozesse keine Standardsimulationen erlaubt. In mehreren Schlüsselaspekten hat das Fraunhofer ITWM eigene Modelle und Werkzeuge entwickelt, so dass heute simulationsbasierte Beiträge zur Auslegung und Steuerung der Prozesse geleistet werden können. Dabei wurden durch neue Modellierungsansätze, wie turbulente aerodynamische Widerstandsmodelle für die Filamentdynamik und stochastische Ersatzmodelle für die Vliesbildung, interessante Themenfelder für die Angewandte Mathematik angestoßen. Ausgehend von der Cosserat-Theorie gibt der vorliegende Beitrag einen geschlossenen Überblick zu Modellen, Algorithmen und Softwarebausteinen. Der erreichte Stand wird an den industriellen Anwendungen zum Spunbond-Prozess und zum Rotationsspinnen von Glaswolle demonstriert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literaturverzeichnis

Publikationen der Autoren

  1. Arne, W., Marheineke, N., Meister, A., Wegener, R.: Numerical analysis of Cosserat rod and string models for viscous jets in rotational spinning processes. Math. Models Methods Appl. Sci. 20(10), 1941–1965 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Arne, W., Marheineke, N., Meister, A., Wegener, R.: Finite volume approach for the instationary Cosserat rod model describing the spinning of viscous jets, arXiv:1207.0731 (2012)

  3. Arne, W., Marheineke, N., Schnebele, J., Wegener, R.: Fluid-fiber-interactions in rotational spinning process of glass wool manufacturing. J. Math. Ind. 1, 2 (2011)

    MathSciNet  Google Scholar 

  4. Arne, W., Marheineke, N., Wegener, R.: Asymptotic transition of Cosserat rod to string models for curved viscous inertial jets. Math. Models Methods Appl. Sci. 21(10), 1987–2018 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Bonilla, L.L., Götz, T., Klar, A., Marheineke, N., Wegener, R.: Hydrodynamic limit for the Fokker–Planck equation describing fiber lay-down models. SIAM J. Appl. Math. 68(3), 648–665 (2007)

    MathSciNet  Google Scholar 

  6. Götz, T., Klar, A., Marheineke, N., Wegener, R.: A stochastic model and associated Fokker–Planck equation for the fiber lay-down process in nonwoven production processes. SIAM J. Appl. Math. 67(6), 1704–1717 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Götz, T., Klar, A., Unterreiter, A., Wegener, R.: Numerical evidence for the non-existence of solutions to the equations describing rotational fiber spinning. Math. Models Methods Appl. Sci. 18(10), 1829–1844 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Grothaus, M., Klar, A., Maringer, J., Stilgenbauer, P., Wegener, R.: Application of a three-dimensional fiber lay-down model to non-woven production processes. J. Math. Ind. 4, 4 (2014)

    Google Scholar 

  9. Hietel, D., Wegener, R.: Simulation of spinning and laydown processes. Technical Textiles 3, 145–148 (2005)

    Google Scholar 

  10. Hübsch, F., Marheineke, N., Ritter, K., Wegener, R.: Random field sampling for a simplified model of melt-blowing considering turbulent velocity fluctuations. J. Stat. Phys. 150(6), 1115–1137 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Klar, A., Marheineke, N., Wegener, R.: Hierarchy of mathematical models for production processes of technical textiles. Z. Angew. Math. Mech. 89, 941–961 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Klar, A., Maringer, J., Wegener, R.: A 3d model for fiber lay-down in nonwoven production processes. Math. Models Methods Appl. Sci. 22(9), 1250020 (2012)

    MathSciNet  Google Scholar 

  13. Klar, A., Maringer, J., Wegener, R.: A smooth 3d model for fiber lay-down in nonwoven production processes. Kinet. Relat. Models. 5(1), 57–112 (2012)

    MathSciNet  Google Scholar 

  14. Lorenz, M., Marheineke, N., Wegener, R.: On simulations of spinning processes with a stationary one-dimensional upper convected Maxwell model. J. Math. Ind. 4, 2 (2014)

    Google Scholar 

  15. Marheineke, N., Liljo, J., Mohring, J., Schnebele, J., Wegener, R.: Multiphysics and multimethods problem of rotational glass fiber melt-spinning. Int. J. Numer. Anal. Model. B 3(3), 330–344 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Marheineke, N., Wegener, R.: Fiber dynamics in turbulent flows: General modeling framework. SIAM J. Appl. Math. 66(5), 1703–1726 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Marheineke, N., Wegener, R.: Fiber dynamics in turbulent flows: Specific Taylor drag. SIAM J. Appl. Math. 68(1), 1–23 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Marheineke, N., Wegener, R.: Asymptotic model for the dynamics of curved viscous fibers with surface tension. J. Fluid Mech. 622, 345–369 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Marheineke, N., Wegener, R.: Modeling and application of a stochastic drag for fiber dynamics in turbulent flows. Int. J. Multiph. Flow 37, 136–148 (2011)

    Google Scholar 

  20. Panda, S., Marheineke, N., Wegener, R.: Systematic derivation of an asymptotic model for the dynamics of curved viscous fibers. Math. Methods Appl. Sci. 31, 1153–1173 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Tiwari, S., Antonov, S., Hietel, D., Kuhnert, J., Olawsky, F., Wegener, R.: A meshfree method for simulations of interactions between fluids and flexible structures. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations III. Lecture Notes in Computational Science and Engineering, vol. 57, pp. 249–264. Springer, Berlin (2006)

    Google Scholar 

Dissertationen zum Thema am Fraunhofer ITWM

  1. Arne, W.: Viskose Jets in rotatorischen Spinnprozessen. Ph.D. thesis, Universität Kassel (2012)

    Google Scholar 

  2. Dhadwal, R.: Fibre spinning: Model analysis. Ph.D. thesis, Technische Universität Kaiserslautern (2005)

    Google Scholar 

  3. Leithäuser, C.: Controllability of shape-dependent operators and constrained shape optimization for polymer distributors. Ph.D. thesis, Technische Universität Kaiserslautern (2013)

    Google Scholar 

  4. Lorenz, M.: On a viscoelastic fibre model – Asymptotics and numerics. Ph.D. thesis, Technische Universität Kaiserslautern (2013)

    Google Scholar 

  5. Marheineke, N.: Turbulent fibers – On the motion of long, flexible fibers in turbulent flows. Ph.D. thesis, Technische Universität Kaiserslautern (2005)

    Google Scholar 

  6. Maringer, J.: Stochastic and deterministic models for fiber lay-down. Ph.D. thesis, Technische Universität Kaiserslautern (2013)

    Google Scholar 

  7. Panda, S.: The dynamics of viscous fibers. Ph.D. thesis, Technische Universität Kaiserslautern (2006)

    Google Scholar 

  8. Repke, S.: Adjoint-based optimization approaches for stationary free surface flows. Ph.D. thesis, Technische Universität Kaiserslautern (2011)

    Google Scholar 

  9. Schröder, S.: Stochastic methods for fiber-droplet collisions in flow processes. Ph.D. thesis, Technische Universität Kaiserslautern (2013)

    Google Scholar 

Weitere Literatur

  1. Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (2006)

    Google Scholar 

  2. Audoly, B., Clauvelin, N., Brun, P.T., Bergou, M., Grinspun, E., Wardetzky, M.: A discrete geometric approach for simulating the dynamics of thin viscous threads. J. Comput. Phys. 253, 18–49 (2013)

    MathSciNet  Google Scholar 

  3. Audoly, B., Pomeau, Y.: Elasticity and Geometry. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  4. Barrett, J.W., Knezevic, D.J., Süli, E.: Kinetic Models of Dilute Polymers: Analysis, Approximation and Computation. Nećas Center for Mathematical Modeling, Prague (2009)

    Google Scholar 

  5. Batchelor, G.K.: Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44(3), 419–440 (1970)

    MathSciNet  MATH  Google Scholar 

  6. Bechtel, S.E., Forest, M.G., Holm, D.D., Lin, K.J.: One-dimensional closure models for three-dimensional incompressible viscoelastic free jets: von Karman flow geometry and elliptical cross-section. J. Fluid Mech. 196, 241–262 (1988)

    MathSciNet  MATH  Google Scholar 

  7. Bonilla, L.L., Klar, A., Martin, S.: Higher order averaging of linear Fokker–Planck equations with periodic forcing. SIAM J. Appl. Math. 72(4), 1315–1342 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Bonilla, L.L., Klar, A., Martin, S.: Higher order averaging of Fokker–Planck equations for nonlinear fiber lay-down processes. SIAM J. Appl. Math. 74(2), 366–391 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Chiu-Webster, S., Lister, J.R.: The fall of a viscous thread onto a moving surface: a fluid-mechanical sewing machine. J. Fluid Mech. 569, 89–111 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann, Paris (1909)

    Google Scholar 

  11. Cox, R.G.: The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech. 44(4), 791–810 (1970)

    MATH  Google Scholar 

  12. Decent, S.P., King, A.C., Simmons, M.J.H., Parau, E.I., Wallwork, I.M., Gurney, C.J., Uddin, J.: The trajectory and stability of a spiralling liquid jet: Viscous theory. Appl. Math. Model. 33(12), 4283–4302 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Desvilettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous entropy-dissipating systems: The linear Fokker–Planck equation. Commun. Pure Appl. Math. 54, 1–42 (2001)

    Google Scholar 

  14. Dewynne, J.N., Ockendon, J.R., Wilmott, P.: A systematic derivation of the leading-order equations for extensional flows in slender geometries. J. Fluid Mech. 244, 323–338 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Doulbeault, J., Klar, A., Mouhot, C., Schmeiser, C.: Exponential rate of convergence to equilibrium for a model describing fiber lay-down processes. Appl. Math. Res. Express 2013, 165–175 (2013)

    Google Scholar 

  16. Doulbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for linear kinetic equations conserving mass, arXiv:1005.1495 (2010)

  17. Eggers, J.: Nonlinear dynamics and breakup of free-surface flow. Rev. Mod. Phys. 69, 865–929 (1997)

    MATH  Google Scholar 

  18. Eggers, J., Dupont, T.: Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech. 262, 205–221 (2001)

    MathSciNet  Google Scholar 

  19. Elliott, F., Majda, A.J.: A new algorithm with plane waves and wavelets for random velocity fields with many spatial scales. J. Comput. Phys. 117, 146–162 (1995)

    MathSciNet  MATH  Google Scholar 

  20. Entov, V.M., Yarin, A.L.: The dynamics of thin liquid jets in air. J. Fluid Mech. 140, 91–111 (1984)

    MATH  Google Scholar 

  21. Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  22. Forest, M.G., Wang, Q.: Dynamics of slender viscoelastic free jets. SIAM J. Appl. Math. 54(4), 996–1032 (1994)

    MathSciNet  MATH  Google Scholar 

  23. Forest, M.G., Wang, Q., Bechtel, S.E.: 1d models for thin filaments of liquid crystalline polymers: Coupling of orientation and flow in the stability of simple solutions. Physics D 99(4), 527–554 (2000)

    Google Scholar 

  24. Frisch, U.: Turbulence. The Legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  25. Geyling, F.T., Homsey, G.M.: Extensional instabilities of the glass fiber drawing process. Glass Technol. 21, 95–102 (1980)

    Google Scholar 

  26. Gidaspow, D.: Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academic Press, San Diego (1994)

    MATH  Google Scholar 

  27. Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D., Périaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow. J. Comput. Phys. 169, 363–426 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Gospodinov, P., Roussinov, V.: Nonlinear instability during the isothermal drawing of optical fibers. Int. J. Multiph. Flow 19, 1153–1158 (1993)

    MATH  Google Scholar 

  29. Grothaus, M., Klar, A.: Ergodicity and rate of convergence for a non-sectorial fiber lay-down process. SIAM J. Math. Anal. 40(3), 968–983 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Grothaus, M., Klar, A., Maringer, J., Stilgenbauer, P.: Geometry, mixing properties and hypocoercivity of a degenerate diffusion arising in technical textile industry. arXiv:1203.4502 (2012)

  31. Grothaus, M., Stilgenbauer, P.: Geometric Langevin equations on submanifolds and applications to the stochastic melt-spinning process of nonwovens and biology. Stoch. Dyn. 13(4), 1350001 (2013)

    MathSciNet  Google Scholar 

  32. Hagen, T.C.: On viscoelastic fluids in elongation. Adv. Math. Res. 1, 187–205 (2002)

    MathSciNet  Google Scholar 

  33. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, 2nd edn. Nonstiff Problems. Springer, Berlin (2009)

    Google Scholar 

  34. Hartmann, S., Meister, A., Schäfer, M., Turek, S. (eds.): Fluid-Structure Interaction – Theory, Numerics and Application. Kassel University Press, Kassel (2009)

    Google Scholar 

  35. Herty, M., Klar, A., Motsch, S., Olawsky, F.: A smooth model for fiber lay-down processes and its diffusion approximations. Kinet. Relat. Models 2(3), 489–502 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Hlod, A., Aarts, A.C.T., van de Ven, A.A.F., Peletier, M.A.: Three flow regimes of viscous jet falling onto a moving surface. IMA J. Appl. Math. 77(2), 196–219 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Hoerner, S.F.: Fluid-Dynamic Drag. Practical Information on Aerodynamic Drag and Hydrodynamic Resistance. (1965) Published by the author. Obtainable from ISVA

    Google Scholar 

  38. Howell, P.D., Siegel, M.: The evolution of a slender non-axisymmetric drop in an extensional flow. J. Fluid Mech. 521, 155–180 (2004)

    MathSciNet  MATH  Google Scholar 

  39. Jung, P., Leyendecker, S., Linn, J., Ortiz, M.: A discrete mechanics approach to Cosserat rod theory – Part I: Static equilibria. Int. J. Numer. Methods Eng. 85, 31–60 (2010)

    MathSciNet  Google Scholar 

  40. Keller, J.B., Rubinow, S.I.: Slender-body theory for slow viscous flow. J. Fluid Mech. 75(4), 705–714 (1976)

    MATH  Google Scholar 

  41. Kirchhoff, G.: Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. J. Reine Angew. Math. 56, 285–316 (1859)

    MATH  Google Scholar 

  42. Kolb, M., Savov, M., Wübker, A.: (Non-)ergodicity of a degenerate diffusion modeling the fiber lay down process. SIAM J. Math. Anal. 45(1), 1–13 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Kurbanmuradov, O., Sabelfeld, K.: Stochastic spectral and Fourier-wavelet methods for vector Gaussian random fields. Monte Carlo Methods Appl. 12(5–6), 395–445 (2006)

    MathSciNet  MATH  Google Scholar 

  44. Kutoyants, Y.: Statistical Inference for Ergodic Diffusion Processes. Springer, London (2004)

    MATH  Google Scholar 

  45. Lamb, H.: On the uniform motion of a sphere through a viscous fluid. Philos. Mag. 6(21), 113–121 (1911)

    Google Scholar 

  46. Launder, B.E., Spalding, B.I.: Mathematical Models of Turbulence. Academic Press, London (1972)

    MATH  Google Scholar 

  47. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  48. Lu, Q.Q.: An approach to modeling particle motion in turbulent flows – I. Homogeneous isotropic turbulence. Atmospheric Enviroment 29(3), 423–436 (1995)

    Google Scholar 

  49. Maddocks, J.H.: Stability of nonlinearly elastic rods. Arch. Ration. Mech. Anal. 85(4), 311–354 (1984)

    MathSciNet  MATH  Google Scholar 

  50. Maddocks, J.H., Dichmann, D.J.: Conservation laws in the dynamics of rods. J. Elast. 34, 83–96 (1994)

    MathSciNet  MATH  Google Scholar 

  51. Mahadevan, L., Keller, J.B.: Coiling of flexible ropes. Proc. R. Soc. Lond. A 452, 1679–1694 (1996)

    MathSciNet  MATH  Google Scholar 

  52. Majda, A.J.: Random shearing direction models for isotropic turbulent diffusion. J. Stat. Phys. 75(5–6), 1153–1165 (1994)

    MATH  Google Scholar 

  53. Malkan, S.R.: An overview of spunbonding and meltblowing technologies. Tappi J. 78(6), 185–190 (1995)

    Google Scholar 

  54. Matovich, M.A., Pearson, J.R.A.: Spinning a molten threadline. Steady-state isothermal viscous flows. Ind. Eng. Chem. Fundam. 8(3), 512–520 (1969)

    Google Scholar 

  55. Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005)

    MathSciNet  Google Scholar 

  56. Pearson, J.R.A.: Mechanics of Polymer Processing. Elsevier, New York (1985)

    Google Scholar 

  57. Pearson, J.R.A., Matovich, M.A.: Spinning a molten threadline Stability. Ind. Eng. Chem. Fundam. 8(3), 605–609 (1969)

    Google Scholar 

  58. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    MathSciNet  MATH  Google Scholar 

  59. Pinchuk, L.S., Goldade, V.A., Makarevich, A.V., Kestelman, V.N.: Melt Blowing: Equipment, Technology and Polymer Fibrous Materials. Springer Series in Materials Processing. Springer, Berlin (2002)

    Google Scholar 

  60. Pismen, L.M., Nir, A.: On the motion of suspended particles in stationary homogeneous turbulence. J. Fluid Mech. 84, 193–206 (1978)

    MathSciNet  MATH  Google Scholar 

  61. Renardy, M.: Mathematical analysis of viscoelastic flows. Annu. Rev. Fluid Mech. 21, 21–36 (1989)

    MathSciNet  Google Scholar 

  62. Ribe, N.M.: Coiling of viscous jets. Proc. R. Soc. Lond. A 2051, 3223–3239 (2004)

    MathSciNet  Google Scholar 

  63. Ribe, N.M., Habibi, M., Bonn, D.: Stability of liquid rope coiling. Phys. Fluids 18, 084102 (2006)

    MathSciNet  Google Scholar 

  64. Ribe, N.M., Lister, J.R., Chiu-Webster, S.: Stability of a dragged viscous thread: Onset of ‘stitching’ in a fluid-mechanical ‘sewing machine’. Phys. Fluids 18, 124105 (2006)

    Google Scholar 

  65. Rubin, M.B.: Cosserat Theories. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  66. Schewe, G.: On the force fluctuations acting on a circular cylinder in cross-flow from subcritical up to transcritical Reynolds numbers. J. Fluid Mech. 133, 265–285 (1983)

    Google Scholar 

  67. Schlichting, H.: Grenzschicht-Theorie. Verlag G. Braun, Karlsruhe (1982)

    MATH  Google Scholar 

  68. Schultz, W.W., Davis, S.H.: One-dimensional liquid fibres. J. Rheol. 26, 331–345 (1982)

    MATH  Google Scholar 

  69. Shah, F.T., Pearson, J.R.A.: On the stability of non-isothermal fibre spinning. Ind. Eng. Chem. Fundam. 11, 145–149 (1972)

    Google Scholar 

  70. Simo, J.C., Vu-Quoc, L.: Three-dimensional finite strain rod model. Part I: Computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)

    MATH  Google Scholar 

  71. Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions – a geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66, 125–161 (1988)

    MathSciNet  MATH  Google Scholar 

  72. Stokes, Y.M., Tuck, E.O.: The role of inertia in extensional fall of viscous drop. J. Fluid Mech. 498, 205–225 (2004)

    MathSciNet  MATH  Google Scholar 

  73. Sumer, B.M., Fredsoe, J.: Hydrodynamics Around Cylindrical Structures. World Scientific, New Jersey (2006)

    MATH  Google Scholar 

  74. Taylor, G.I.: Analysis of the swimming of long and narrow animals. Proc. R. Soc. Lond. A 214, 158–183 (1952)

    MATH  Google Scholar 

  75. Tiwari, S., Kuhnert, J.: Finite pointset method based on the projection method for simulations of the incompressible Navier–Stokes equations. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 26, pp. 373–387. Springer, Berlin (2003)

    Google Scholar 

  76. Tomotika, S., Aoi, T.: An expansion formula for the drag on a circular cylinder moving through a viscous fluid at small Reynolds number. Q. J. Mech. Appl. Math. 4, 401–406 (1951)

    MathSciNet  MATH  Google Scholar 

  77. Tomotika, S., Aoi, T., Yosinobu, H.: On the forces acting on a circular cylinder set obliquely in a uniform stream at low values of Reynolds number. Proc. R. Soc. Lond. A 219(1137), 233–244 (1953)

    MathSciNet  MATH  Google Scholar 

  78. VDI-Gesellschaft: VDI-Wärmeatlas, 10th edn. Springer, Berlin (2006)

    Google Scholar 

  79. Wallwork, I.M., Decent, S.P., King, A.C., Schulkes, R.M.S.M.: The trajectory and stability of a spiralling liquid jet. Part 1. Inviscid theory. J. Fluid Mech. 459, 43–65 (2002)

    MathSciNet  MATH  Google Scholar 

  80. Whitman, A.B., DeSilva, C.N.: An exact solution in a nonlinear theory of rods. J. Elast. 4, 265–280 (1974)

    MATH  Google Scholar 

  81. Yarin, A.L.: Free Liquid Jets and Films: Hydrodynamics and Rheology. Longman, New York (1993)

    MATH  Google Scholar 

  82. Yarin, A.L., Gospodinov, P., Gottlieb, O., Graham, M.D.: Newtonian glass fiber drawing: Chaotic variation of the cross-sectional radius. Phys. Fluids 11(11), 3201–3208 (1999)

    MATH  Google Scholar 

  83. Zdravkovich, M.M.: Flow Around Circular Cylinders. Fundamentals, vol. 1. Oxford University Press, New York (1997)

    MATH  Google Scholar 

  84. Ziabicki, A., Kawai, H.: High Speed Melt Spinning. Wiley, New York (1985)

    Google Scholar 

Download references

Danksagung

Die in diesem Beitrag gezeigten Simulationsergebnisse beruhen auf der Arbeit der in Abschn. 3 genannten Mitarbeiter der Abteilung Transportvorgänge am Fraunhofer ITWM. Ihnen gilt unser besonderer Dank. Wesentliche Arbeiten der Autoren wurden unterstützt durch die Deutsche Forschungsgemeinschaft (DFG), WE 2003/3-1, WE 2003/4-1, MA 4526/2-1 und das Bundesministerium für Bildung und Forschung (BMBF), Verbundprojekt ProFil, 05M10WEA, 05M10AMB, Verbundprojekt OPAL, 05M13WEA, 05M13AMD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimund Wegener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wegener, R., Marheineke, N., Hietel, D. (2015). Virtuelle Produktion von Filamenten und Vliesstoffen. In: Neunzert, H., Prätzel-Wolters, D. (eds) Mathematik im Fraunhofer-Institut. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44877-9_6

Download citation

Publish with us

Policies and ethics