Skip to main content

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 126))

Abstract

High speed trains have been running for almost 50 years in many countries. High speed railway systems differ from each other in terms of rolling stock, track, commercial speed, operating conditions, maintenance. Then, the environmental noise varies according to all these parameters. To improve the insertion of high speed railway systems in the environment, noise mitigation measures have been developed. Each one provides a noise reduction for the considered system. Combinations of the noise reduction solutions are also very efficient and cost effective.

A state of the art of pass-by noise measurement results from several high-speed railway systems all around the world is presented and discussed. The main noise sources of high speed railway system, the rolling noise, the aerodynamic noise and the equipment noise, are described. The measurement and calculation methods to characterise the sources are presented. Each mitigation measure and its efficiency are described. As a conclusion, some indications for future research topics in high speed railway noise are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. High-speed rolling stock technical specification for interoperability (February 21, 2008)

    Google Scholar 

  2. ISO 3095:2005, Railway applications – Acoustics – Measurement of noise emitted by railbound vehicles (2005)

    Google Scholar 

  3. Fodiman, P., Staiger, M.: Improvement of the noise technical specifications for interoperability: The input of the NOEMIE project. In: International Workshop on Railway Noise (2004)

    Google Scholar 

  4. SNCF Report: Indicateur événementiel, DOC008259 / D004674 (2007)

    Google Scholar 

  5. Barsikow, B., King, W.F.: On removing the Doppler frequency shift from array measurements of railway noise. Journal of Sound and Vibration 120(1), 190–196 (1988)

    Article  Google Scholar 

  6. Poisson, F.: Localisation et caractérisation de sources de sources acoustiques en mouvement rapide. PhD Thesis, Université du Maine, France (1996)

    Google Scholar 

  7. Soderman, P.T., Allen, C.S.: Microphone measurements in and out of airstream. In: Mueller, T.J. (ed.) Aeroacoustic Measurements. Springer (2002)

    Google Scholar 

  8. Yamazaki, N., Takaishi, T.: Wind tunnel test on reduction of aeroacoustic noise from car gaps and bogie sections. Quarterly Report of RTRI 48(4), 229–235 (2007)

    Article  Google Scholar 

  9. Poisson, F., Gautier, P.E., Létourneaux, F.: Noise sources for high speed trains: a review of results in the TGV case. In: Schulte-Werning, B., Thompson, D., Gautier, P.-E., Hanson, C., Hemsworth, B., Nelson, J., Maeda, T., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 99, pp. 71–77. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Zhang, X.: The directivity of railway noise at different speeds. Journal of Sound and Vibration 10, 1016 (2010)

    Google Scholar 

  11. Le Courtois, F.: Caractérisation des sources acoustiques sur le matériel ferroviaire par méthode d’antennerie. Ph D, Université du Maine, France (2012)

    Google Scholar 

  12. Kitagawa, T., Thompson, D.J.: The horizontal directivity of noise radiated by a rail and implications for the use of microphone arrays. Journal of Sound and Vibration 329, 202–220 (2010)

    Article  Google Scholar 

  13. Faure, B., Chiello, O., Pallas, M.A.: Characterization of the acoustic field radiated by a rail using a microphone array. In: International Congress of Sound and Vibration (2010)

    Google Scholar 

  14. Letourneaux, F., Mellet, C., Coste, O.: MISO: A measurement method to separate noise emission of railway vehicles and track. World Congress of Railway Research (2003)

    Google Scholar 

  15. Gautier, P.E., Poisson, F., Létourneaux, F.: High speed trains external noise: recent results in the TGV case. In: International Congress of Acoustic (2007)

    Google Scholar 

  16. Thompson, D.J., Janssens, M.H.A.: TWINS – Track-wheel interaction noise software. Theoretical manual, version 2.4, TNO report TPD-HAG-RPT-930214 (revised) (1997)

    Google Scholar 

  17. Vincent, N., Bouvet, P., Thompson, D., Gautier, P.E.: Theoretical optimization of track components to reduce rolling noise. Journal of Sound and Vibration 193(1), 161–171 (1996)

    Article  Google Scholar 

  18. Thompson, D.J., Jones, C.J.C., Waters, T.P., Farrington, D.: A tuned damping device for reducing noise from railway track. Applied Acoustics 68, 43–57 (2007)

    Article  Google Scholar 

  19. Létourneaux, F., Cordier, J.F., Poisson, F., Douarche, N.: High speed railway noise: assessment of mitigation measures. In: Schulte-Werning, B., Thompson, D., Gautier, P.-E., Hanson, C., Hemsworth, B., Nelson, J., Maeda, T., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 99, pp. 56–62. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Poisson, F., Margiocchi, F., Bongini, E., Dragna, D.: Global pass-by noise of high-speed train running onto slab track and ballasted track. World Congress of Railway Research (2013)

    Google Scholar 

  21. Müller, G., Möser, M.: Taschenbuch der Technischen Akustik. Springer (2003)

    Google Scholar 

  22. Holzl, G.: A quiet railway by noise-optimised wheels. Zeitschrift fur Eisenbahnwesen und Verkehrstechnikund Die Eisenbahntechnik Glasers Annalen 188(1), 20–23 (1994) (in German)

    Google Scholar 

  23. German-French cooperation DeuFraKo Annex K, final report: Noise sources from high speed guided transport (1994)

    Google Scholar 

  24. Thompson, D.: Railway noise and vibration. Elsevier (2009)

    Google Scholar 

  25. Kitagawa, T., Nagakura, K.: Aerodynamic noise generated by Shinkansen cars. Journal of Sound and Vibrations 231, 913–924 (2000)

    Article  Google Scholar 

  26. Kurita, T.: Development of external-noise reduction technologies for Shinkansen high-speed trains. Journal of Environment and Engineering 6(4), 805–819 (2011)

    Article  MathSciNet  Google Scholar 

  27. Paradot, N., Masson, E., Poisson, F., Grégoire, R., Guilloteau, E., Touil, H., Sagaut, P.: Aeroacoustics methods for high speed train noise prediction. World Congress of Railway Research (2008)

    Google Scholar 

  28. Sueki, T., Ikeda, M., Takaishi, T.: Aerodynamic noise reduction using porous materials and their application to high speed pantographs. Quarterly Report of RTRI 50(1) (2009)

    Google Scholar 

  29. Fremion, N., Vincent, N., Jacob, M., Robert, G., Louisot, A., Guerrand, S.: Aerodynamic noise radiated by the intercoach spacing and the bogie of a high speed train. Journal of Sound and Vibration 231, 577–593 (2000)

    Article  Google Scholar 

  30. Talotte, C.: Aerodynamic noise: a critical survey. Journal of Sound and Vibration 231(3), 549–562 (2000)

    Article  Google Scholar 

  31. Marié, S., Ricot, D., Sagaut, P.: Accuracy of lattice Boltzmann method for aeroacoustic simulations. In: 13th AIAA/CEAS Aeroacoustics Conference (2007)

    Google Scholar 

  32. Dong, Y.H., Sagaut, P., Marie, S.: Inertial consistent subgrid model for large-eddy simulation based on the lattice Boltzmann method. Journal Physics of Fluids 20, 035104 (2008)

    Google Scholar 

  33. Paradot, N., Poisson, F., Grégoire, R.: Méthodes numériques pour la prédiction du bruit aérodynamique des trains à grande vitesse. Revue Générale des Chemins de Fer 173 (June 2008)

    Google Scholar 

  34. Gaylard, A.: A comparison of a conventional RANS and a lattice gas dynamics simulation - A case study in high speed rail aerodynamics. In: IMech Symposium (1998)

    Google Scholar 

  35. Casalino, D.: An advanced time approach for acoustic analogy prediction. Journal of Sound and Vibration 261, 583–612 (2003)

    Article  Google Scholar 

  36. Masson, E., Paradot, N., Allain, E.: The numerical prediction of the aerodynamic noise of the TGV POS high-speed train power car. In: Maeda, T., Gautier, P.-E., Hanson, C.E., Hemsworth, B., Nelson, J.T., Schulte-Werning, B., Thompson, D., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 437–444. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  37. Dong, Y.D., Sagaut, P.: A study of time correlations in lattice Boltzmann-based large-eddy simulation of isotropic turbulence. Journal Physics of Fluids 20, 035105 (2008)

    Google Scholar 

  38. Gu, X., Li, Y., Liu, L.: Researches on the application of noise source identification technique of high-speed trains in China. In: UIC High Speed Congress (2012)

    Google Scholar 

  39. German-French cooperation DeuFraKo Annex K2, final report: Noise sources from high speed guided transport (1999)

    Google Scholar 

  40. Holzl, G., Fodiman, P., Schmitz, K.P., Pallas, M.A., Barsikow, B.: Deufrako K2: localized sound sources on the high speed vehicles ICE, TGV-A and TR-07, Internoise (1994)

    Google Scholar 

  41. Guccia, L., Gautier, P.E.: Aeroacoustic research applied to TGV. World Congress of Railway Research (1996)

    Google Scholar 

  42. Fremion, N., Vincent, N., Jacob, M., Robert, G., Louisot, A., Guerrand, S.: Aerodynamic noise radiated by the intercoach spacing and the bogie of a high-speed train. Journal of Sound and Vibration 231, 577–593 (2000)

    Article  Google Scholar 

  43. KRRI: Test and assessment of Korean high speed train, presentation of the Korea Rail Road Research Institut to SNCF

    Google Scholar 

  44. Takaishi, T., Ikeda, M., Kato, C.: Method of evaluation dipole sound sources in a finite computational domain. JASA 116(3), 1427–1435 (2004)

    Article  Google Scholar 

  45. Ikeda, M., Mitsumoji, T.: Evaluation method of low frequency aeroacoustic noise source structure generated by Shinkansen pantograph. Quarterly Report of RTRI 49(3), 184–190 (2008)

    Article  Google Scholar 

  46. Ikeda, M., Mitsumoji, T.: Numerical estimation of aerodynamic interference between panhead and articulated frame. Quarterly Report of RTRI 50(4), 227–232 (2009)

    Article  Google Scholar 

  47. Gerard, A., Berry, A., Masson, P.: Control of tonal noise from subsonic axial fans. Part 1: reconstruction of aeroacoustic sources from far-field sound pressure. Journal of Sound and Vibration 288(4-5), 1049–1075 (2005)

    Article  Google Scholar 

  48. Roger, M.: Préambule, fondements théoriques et état de l’art. Congrès Bruit aérodynamique des ventilateurs, Lyon (2006)

    Google Scholar 

  49. Silence: Improved design of a Diesel engine cooling system, Deliverable ED17, EU-FP6 SILENCE project (2007)

    Google Scholar 

  50. Poisson, F., Gautier, P.E.: The railway noise reductions achieved in the Silence project. In: Acoustics 2008, Paris (2008)

    Google Scholar 

  51. Silence: Global reference frame of the vibro-acoustic and of the dynamic behaviour of the traction motor and of the wheel, Deliverable E.D.18, EU-FP6 SILENCE project (2006)

    Google Scholar 

  52. Hemsworth, B.: Noise barriers for fast passenger trains. Internoise (1977)

    Google Scholar 

  53. Belingard, P., Poisson, F., Bellaj, S.: Experimental study of noise barriers for high-speed trains. In: Maeda, T., Gautier, P.-E., Hanson, C.E., Hemsworth, B., Nelson, J.T., Schulte-Werning, B., Thompson, D., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 495–503. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  54. Nagakura, K., Kitagawa, T.: Study on effective shapes of sound barriers for Shinkansen. RTRI Report 16(12) (2002)

    Google Scholar 

  55. Ibarcq, P.: Final report of European projet EUROECRAN (1999)

    Google Scholar 

  56. Poisson, F., Gautier, P.E., Bongini, E., Létourneaux, F.: Noise radiated by a TGV Duplex running at 360 km/h: a summary of results and reduction potential. World Congress of Railway Research (2011)

    Google Scholar 

  57. Gambard, N., Sapena, J., Planeau, V.: A methodology for exterior noise prediction of railway rolling stock. Euronoise (2009)

    Google Scholar 

  58. Frid, A., Orrenius, U., Kohrs, T., Leth, S.: BRAINS - the concepts behind a quick and efficient tool for prediction of exterior and interior railway vehicle noise. In: Acoustics 2012 (2012)

    Google Scholar 

  59. Joslin, R.D., Thomas, R.H., Choudhari, M.M.: Synergism of flow and noise control technologies. Prog. Aerosp. Sci. 41, 363–417 (2005)

    Article  Google Scholar 

  60. Pamiès, M., Garnier, E., Merlen, A., Sagaut, P.: Response of a spatially developing turbulent boundary layer to active control strategies in the framework of opposition control. Phys. Fluids 19, 108102 (2007)

    Article  Google Scholar 

  61. Tardu, S.F.: Active control of near-wall turbulence by local oscillating blowing. J. Fluid Mech. 439, 217–253 (2001)

    Article  MATH  Google Scholar 

  62. Selby, G., Lin, J., Howard, F.: Control of low-speed turbulent separated flow using jet vortex generators. Exp. Fluids 12, 394–400 (1992)

    Article  Google Scholar 

  63. Nakashima, T., Ise, S.: Active noise barrier for far field noise reduction. International Congress of Acoustics (2004)

    Google Scholar 

  64. Green train shows Swedish technology. International Railway Journal, 51–54 (September 2008)

    Google Scholar 

  65. In focus Germany, Developing the high speed train of 2035, Railway Gazette International (March 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Poisson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Poisson, F. (2015). Railway Noise Generated by High-Speed Trains. In: Nielsen, J., et al. Noise and Vibration Mitigation for Rail Transportation Systems. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44832-8_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44832-8_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44831-1

  • Online ISBN: 978-3-662-44832-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics