Advertisement

Ground-Borne Vibration due to Railway Traffic: A Review of Excitation Mechanisms, Prediction Methods and Mitigation Measures

  • G. LombaertEmail author
  • G. Degrande
  • S. François
  • D. J. Thompson
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 126)

Abstract

The aim of this paper is to provide a comprehensive overview of the state of the art on railway-induced ground vibration. The governing physical mechanisms, prediction methods, and mitigation measures of ground-borne vibration are discussed, with focus on low frequency feelable vibration and the case of railway traffic at grade. In order to clarify the importance of quasi-static and dynamic excitation, the basic problems of a moving load with constant magnitude and harmonic magnitude are discussed first. Dynamic excitation due to wheel and track unevenness and parametric excitation is shown to be the dominant source of environmental vibration in most cases. Next, an overview of prediction methods for ground-borne vibration is given. The advantages and limitations of numerical methods, based on physical or mechanical models, and empirical models, derived from measured data, are discussed. Finally, the mitigation of railway-induced ground vibration is considered, where the focus goes to mitigation measures at source (wheel and rail unevenness, rolling stock, track) and measures on the transmission path (trenches and barriers, wave impeding blocks, subgrade stiffening, and heavy masses next to the track). In conclusion, a number of open points requiring further research is given.

Keywords

Rayleigh Wave Parametric Excitation Ground Vibration Railway Track Rayleigh Wave Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achenbach, J.: Wave propagation in elastic solids. North-Holland Series in Applied Mathematics and Mechanics, vol. 16. North-Holland, Amsterdam (1973)zbMATHGoogle Scholar
  2. 2.
    Adam, D., Vogel, A., Zimmermann, A.: Ground improvement techniques beneath existing rail tracks. Ground Improvement 11(4), 229–235 (2007)Google Scholar
  3. 3.
    Adolfsson, K., Andréasson, B., Bengtson, P.-E., Bodare, A., Madshus, C., Massarch, R., Wallmark, G., Zackrisson, P.: High speed lines on soft ground. Evaluation and analyses of measurements from the West Coast Line. Technical report, Banverket, Sweden (1999)Google Scholar
  4. 4.
    Aki, K., Richards, P.: Quantitative seismology, 2nd edn. University Science Books, Sausalito (2002)Google Scholar
  5. 5.
    Andersen, L., Jones, C.: Coupled boundary and finite element analysis of vibration from railway tunnels – a comparison of two- and three-dimensional models. Journal of Sound and Vibration 293(3-5), 611–625 (2006)Google Scholar
  6. 6.
    Andersen, L., Nielsen, S.: Reduction of ground vibration by means of barriers or soil improvement along a railway track. Soil Dynamics and Earthquake Engineering 25, 701–716 (2005)Google Scholar
  7. 7.
    Aubry, D., Clouteau, D., Bonnet, G.: Modelling of wave propagation due to fixed or mobile dynamic sources. In: Chouw, N., Schmid, G. (eds.) Wave Propagation and Reduction of Vibrations Workshop Wave 1994, pp. 109–121. Ruhr Universität Bochum, Germany (1994)Google Scholar
  8. 8.
    Auersch, L.: Wave propagation in layered soils: theoretical solution in wavenumber domain and experimental results of hammer and railway traffic excitation. Journal of Sound and Vibration 173(2), 233–264 (1994)zbMATHGoogle Scholar
  9. 9.
    Auersch, L.: The excitation of ground vibration by rail traffic: theory of vehicle-track-soil interaction and measurements on high-speed lines. Journal of Sound and Vibration 284(1-2), 103–132 (2005)Google Scholar
  10. 10.
    Auersch, L.: Ground vibration due to railway traffic – The calculation of the effects of moving static loads and their experimental verification. Journal of Sound and Vibration 293, 599–610 (2006)Google Scholar
  11. 11.
    Bedford, A., Drumheller, D.: Introduction to elastic wave propagation. John Wiley and Sons (1993)Google Scholar
  12. 12.
    Berggren, E.: Railway Track Stiffness. Dynamic Measurements and Evaluation for Efficient Maintenance. Ph.D. thesis, Royal Institute of Technology (KTH) (2009)Google Scholar
  13. 13.
    Berggren, E., Kaynia, A., Dehlbom, B.: Identification of substructure properties of railway tracks by dynamic stiffness measurements and simulations. Journal of Sound and Vibration 329(19), 3999–4016 (2010)Google Scholar
  14. 14.
    Beskos, D., Dasgupta, B., Vardoulakis, I.: Vibration isolation using open or filled trenches. Part I: 2-D homogeneous soil. Computational Mechanics 1, 43–63 (1986)zbMATHGoogle Scholar
  15. 15.
    Biot, M.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low-frequency range. Journal of the Acoustical Society of America 28(2), 168–178 (1956)MathSciNetGoogle Scholar
  16. 16.
    Biot, M.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. high-frequency range. Journal of the Acoustical Society of America 28(2), 179–191 (1956)MathSciNetGoogle Scholar
  17. 17.
    Bongini, E., Lombaert, G., François, S., Degrande, G.: A parametric study of the impact of mitigation measures on ground borne vibration due to railway traffic. In: De Roeck, G., Degrande, G., Lombaert, G., Müller, G. (eds.) Proceedings of the 8th International Conference on Structural Dynamics EURODYN 2011, pp. 663–670. CD-ROM, Leuven (2011)Google Scholar
  18. 18.
    Bovey, E.: Development of an impact method to determine the vibration transfer characteristics of railway installations. Journal of Sound and Vibration 87(2), 357–370 (1983)Google Scholar
  19. 19.
    British Standards Institution. BS 6472:1992: Evaluation of human exposure to vibration in buildings (1 Hz to 80 Hz) (1992)Google Scholar
  20. 20.
    Clouteau, D., Arnst, M., Al-Hussaini, T., Degrande, G.: Freefield vibrations due to dynamic loading on a tunnel embedded in a stratified medium. Journal of Sound and Vibration 283(1-2), 173–199 (2005)Google Scholar
  21. 21.
    Costa, P., Calçada, R., Cardoso, A.: Ballast mats for the reduction of railway traffic vibrations. numerical study. Soil Dynamics and Earthquake Engineering 42, 137–150 (2012)Google Scholar
  22. 22.
    Costa, P., Calçada, R., Cardoso, A., Bodare, A.: Influence of soil non-linearity on the dynamic response of high-speed railway tracks. Soil Dynamics and Earthquake Engineering 30(4), 221–235 (2010)Google Scholar
  23. 23.
    Coulier, P., Dijckmans, A., Jiang, J., Thompson, D.J., Degrande, G., Lombaert, G.: Stiff wave barriers for the mitigation of railway induced vibrations. In: Nielsen, J.C.O., Anderson, D., Gautier, P.-E., Iida, M., Nelson, J.T., Thompson, D., Tielkes, T., Towers, D.A., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 539–546. Springer, Heidelberg (2015)Google Scholar
  24. 24.
    Coulier, P., François, S., Degrande, G., Lombaert, G.: Subgrade stiffening next to the track as a wave impeding barrier for railway induced vibrations. Soil Dynamics and Earthquake Engineering 48, 119–131 (2013)Google Scholar
  25. 25.
    Cui, F., Chew, C.: The effectiveness of floating slab track system - Part I. receptance methods. Applied Acoustics 61, 441–453 (2000)Google Scholar
  26. 26.
    Degrande, G., Clouteau, D., Othman, R., Arnst, M., Chebli, H., Klein, R., Chatterjee, P., Janssens, B.: A numerical model for ground-borne vibrations from underground railway traffic based on a periodic finite element - boundary element formulation. Journal of Sound and Vibration 293(3-5), 645–666 (2006)Google Scholar
  27. 27.
    Degrande, G., De Roeck, G.: Effectiviteit van een trillingsisolerend scherm in het station van het Leopoldkwartier te Brussel. Report to Dynamic Engineering, Department of Civil Engineering, KU Leuven (December 1992)Google Scholar
  28. 28.
    Degrande, G., Lombaert, G.: An efficient formulation of Krylov’s prediction model for train induced vibrations based on the dynamic reciprocity theorem. Journal of the Acoustical Society of America 110(3), 1379–1390 (2001)Google Scholar
  29. 29.
    Deutsches Institut für Normung. DIN 45672 Teil 2: Schwingungsmessungen in der Umgebung von Schienenverkehrswegen: Auswerteverfahren (1995)Google Scholar
  30. 30.
    Deutsches Institut für Normung. DIN 4150 Teil 2: Erschütterungen im Bauwesen, Einwirkungen auf Menschen in Gebäuden (1999)Google Scholar
  31. 31.
    Deutsches Institut für Normung. DIN 4150 Teil 3: Erschütterungen im Bauwesen, Einwirkungen auf bauliche Anlagen (1999)Google Scholar
  32. 32.
    Dieterman, H., Metrikine, A.: The equivalent stiffness of a halfspace interacting with a beam. Critical velocities of a moving load along the beam. European Journal of Mechanics, A/Solids 15(1), 67–90 (1996)zbMATHGoogle Scholar
  33. 33.
    Dieterman, H., Metrikine, A.: Critical velocities of a harmonic load moving uniformly along an elastic layer. Journal of Applied Mechanics, Transactions of the ASME 64(3), 596–600 (1997)zbMATHGoogle Scholar
  34. 34.
    Dijckmans, A., Ekblad, A., Smekal, A., Degrande, G., Lombaert, G.: A sheet piling wall as a wave barrier for train induced vibrations. In: Papadrakakis, M., Papadopoulos, V., Plevris, V. (eds.) Proceedings of the 4th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, COMPDYN 2013, Kos Island, Greece. CD-ROM (June 2013)Google Scholar
  35. 35.
    Ditzel, A., Herman, G., Drijkoningen, G.: Seismograms of moving trains: a comparison of theory and measurements. Journal of Sound and Vibration 248(4), 635–652 (2001)Google Scholar
  36. 36.
    Ekevid, T., Lane, H., Wiberg, N.-E.: Adaptive solid wave propagation – influences of boundary conditions in high-speed train applications. Computer Methods in Applied Mechanics and Engineering 195, 236–250 (2006)zbMATHGoogle Scholar
  37. 37.
    Ekevid, T., Wiberg, N.-E.: Wave propagation related to high-speed train. A scaled boundary FE-approach for unbounded domains. Computer Methods in Applied Mechanics and Engineering 191, 3947–3964 (2002)zbMATHGoogle Scholar
  38. 38.
    Esveld, C.: Modern railway track, 2nd edn. MRT-Productions, Zaltbommel (2001)Google Scholar
  39. 39.
    Fenton, G.: Random field modeling of CPT data. Journal of Geotechnical and Geoenvironmental Engineering, Proceedings of the ASCE 125(6), 486–535 (1999)Google Scholar
  40. 40.
    Fiala, P., Degrande, G., Augusztinovicz, F.: Numerical modelling of ground borne noise and vibration in buildings due to surface rail traffic. Journal of Sound and Vibration 301(3-5), 718–738 (2007)Google Scholar
  41. 41.
    Fiala, P., Gupta, S., Degrande, G., Augusztinovicz, F.: A parametric study on countermeasures to mitigate subway traffic induced vibration and noise in buildings. In: Sas, P., Bergen, B. (eds.) Proceedings of ISMA 2008 International Conference on Noise and Vibration Engineering, Leuven, pp. 2751–2764 (September 2008)Google Scholar
  42. 42.
    Forrest, J., Hunt, H.: Ground vibration generated by trains in underground tunnels. Journal of Sound and Vibration 294, 706–736 (2006)Google Scholar
  43. 43.
    Forrest, J., Hunt, H.: A three-dimensional tunnel model for calculation of train-induced ground vibration. Journal of Sound and Vibration 294, 678–705 (2006)Google Scholar
  44. 44.
    François, S., Pyl, L., Masoumi, H., Degrande, G.: The influence of dynamic soil-structure interaction on traffic induced vibrations in buildings. Soil Dynamics and Earthquake Engineering 27(7), 655–674 (2007)Google Scholar
  45. 45.
    François, S., Schevenels, M., Lombaert, G., Galvín, P., Degrande, G.: A 2.5D coupled FE-BE methodology for the dynamic interaction between longitudinally invariant structures and a layered halfspace. Computer Methods in Applied Mechanics and Engineering 199(23-24), 1536–1548 (2010)zbMATHGoogle Scholar
  46. 46.
    François, S., Schevenels, M., Thyssen, B., Borgions, J., Degrande, G.: Design and efficiency of a vibration isolating screen in the soil. Soil Dynamics and Earthquake Engineering 39, 113–127 (2012)Google Scholar
  47. 47.
    Galvín, P., Romero, A., Domínguez, J.: Fully three-dimensional analysis of high-speed train–track–soil–structure dynamic interaction. Journal of Sound and Vibration 329, 5147–5163 (2010)Google Scholar
  48. 48.
    Garcia-Bennett, A., Jones, C.J.C., Thompson, D.J.: A numerical investigation of railway ground vibration mitigation using a trench in a layered soil. In: Maeda, T., Gautier, P.-E., Hanson, C.E., Hemsworth, B., Nelson, J.T., Schulte-Werning, B., Thompson, D., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 315–322. Springer, Heidelberg (2012)Google Scholar
  49. 49.
    Gidlöf-Gunnarsson, A., Ögren, M., Terson, J., Öhrström, E.: Railway noise annoyance and the importance of number of trains, ground vibration, and building situational factors. Noise Health 14, 190–201 (2012)Google Scholar
  50. 50.
    Grassie, S.: Rail irregularities, corrugation and acoustic roughness: characteristics, significance and effects of reprofiling. Journal of Rail and Rapid Transit 226(5), 542–557 (2012)Google Scholar
  51. 51.
    Guigou-Carter, C., Villot, M., Guillerme, B., Petit, C.: Analytical and experimental study of sleeper SAT S312 in slab track SATEBA system. Journal of Sound and Vibration 293(3-5), 878–887 (2006); Proceedings of the 8th International Workshop on Railway NoiseGoogle Scholar
  52. 52.
    Hanson, C., Towers, D., Meister, L.: High-speed ground transportation noise and vibration impact assessment. HMMH Report 293630-4, U.S. Department of Transportation, Federal Railroad Administration, Office of Railroad Development (October 2005)Google Scholar
  53. 53.
    Hanson, C., Towers, D., Meister, L.: Transit noise and vibration impact assessment. Report FTA-VA-90-1003-06, U.S. Department of Transportation, Federal Transit Admininistration, Office of Planning and Environment (May 2006)Google Scholar
  54. 54.
    Haskell, N.: The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America 73, 17–43 (1953)MathSciNetGoogle Scholar
  55. 55.
    He, X., Kawatani, M., Nishiyama, S.: An analytical approach to train-induced site vibration around shinkansen viaducts. Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance 6(6), 689–701 (2010)Google Scholar
  56. 56.
    Heckl, M., Hauck, G., Wettschureck, R.: Structure-borne sound and vibration from rail traffic. Journal of Sound and Vibration 193(1), 175–184 (1996)Google Scholar
  57. 57.
    Hemsworth, B.: Reducing groundborne vibrations: state of the art study. Journal of Sound and Vibration 231(3), 703–709 (2000)Google Scholar
  58. 58.
    Hood, R., Greer, R., Breslin, M., Williams, P.: The calculation and assessment of ground-borne noise and perceptible vibration from trains in tunnels. Journal of Sound and Vibration 193, 215–225 (1996)Google Scholar
  59. 59.
    Hung, H., Yang, Y., Chang, D.: Wave barriers for reduction of train-induced vibrations in soils. Journal of Geotechnical Engineering, Proceedings of the ASCE 130(12), 1283–1291 (2004)Google Scholar
  60. 60.
    Hunt, H.: Modelling of rail roughness for the evaluation of vibration-isolation measures. In: 12th International Congress on Sound and Vibration, Lisbon, Portugal (July 2005)Google Scholar
  61. 61.
    Hunt, H.E.M.: Types of rail roughness and the selection of vibration isolation measures. In: Schulte-Werning, B., Thompson, D., Gautier, P.-E., Hanson, C., Hemsworth, B., Nelson, J., Maeda, T., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 99, pp. 341–347. Springer, Heidelberg (2008)Google Scholar
  62. 62.
    Hunt, H., Forrest, J.: Floating slab track for vibration reduction: why simple models don’t work. In: 7th International Congress on Sound and Vibration, Garmisch-Partenkirchen, Germany (July 2000)Google Scholar
  63. 63.
    Hunt, H., Hussein, M.: Vibration from railways: can we achieve better than +/-10 dB prediction accuracy? In: 14th International Congress on Sound and Vibration, Cairns, Australia (July 2007)Google Scholar
  64. 64.
    Hussein, M., Hunt, H.: A numerical model for calculating vibration from a railway tunnel embedded in a full-space. Journal of Sound and Vibration 305, 401–431 (2007)Google Scholar
  65. 65.
    Hyde, J., Lintern, H.: The vibrations of roads and structures. In: Minutes of Proceedings of the Institution of Civil Engineers, pp. 187–243 (1929)Google Scholar
  66. 66.
    International Organization for Standardization. ISO 2631-2:1997: Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration - Part 1: General requirements, 2nd edn. (1997)Google Scholar
  67. 67.
    International Organization for Standardization. ISO 2631-2:1999: Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration - Part 2: Vibration in buildings (1 to 80 Hz) (1999)Google Scholar
  68. 68.
    International Organization for Standardization. ISO 14837-1:2005 Mechanical vibration - Ground-borne noise and vibration arising from rail systems - Part 1: General guidance (2005)Google Scholar
  69. 69.
    Jiang, J., Toward, M.G.R., Dijckmans, A., Thompson, D.J., Degrande, G., Lombaert, G., Ryue, J.: Reducing railway induced ground-borne vibration by using trenches and buried soft barriers. In: Nielsen, J.C.O., Anderson, D., Gautier, P.-E., Iida, M., Nelson, J.T., Thompson, D., Tielkes, T., Towers, D.A., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 555–562. Springer, Heidelberg (2015)Google Scholar
  70. 70.
    Johansson, A., Nielsen, J., Bolmsvik, R., Karlstrom, A., Lunden, R.: Under sleeper pads - Influence on dynamic train-track interaction. Wear 265, 1479–1487 (2008)Google Scholar
  71. 71.
    Jones, C.: Use of numerical-models to determine the effectiveness of anti-vibration systems for railways. Proceedings of the Institution of Civil Engineers-Transport 105(1), 43–51 (1994)Google Scholar
  72. 72.
    Jones, C., Block, J.: Prediction of ground vibration from freight trains. Journal of Sound and Vibration 193(1), 205–213 (1996)Google Scholar
  73. 73.
    Jones, C., Thompson, D., Andreu-Medina, J.: Initial theoretical study of reducing surface-propagating vibration from trains using earthworks close to the track. In: Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven, Belgium, pp. 684–691 (July 2011)Google Scholar
  74. 74.
    Jones, S., Hunt, H.: The effect of inclined soil layers on surface vibration from underground railways using the thin layer method. ASCE Journal of Engineering Mechanics 137(12), 887–900 (2011)Google Scholar
  75. 75.
    Jones, S., Hunt, H.: Voids at the tunnel–soil interface for calculation of ground vibration from underground railways. Journal of Sound and Vibration 330(2), 245–270 (2011)Google Scholar
  76. 76.
    Karlström, A., Boström, A.: An analytical model for train induced ground vibrations from railways. Journal of Sound and Vibration 292, 221–241 (2006)Google Scholar
  77. 77.
    Kattis, S., Polyzos, D., Beskos, D.: Vibration isolation by a row of piles using a 3-D frequency domain BEM. International Journal for Numerical Methods in Engineering 46, 713–728 (1999)zbMATHGoogle Scholar
  78. 78.
    Kausel, E.: Fundamental solutions in elastodynamics: a compendium. Cambridge University Press, New York (2006)Google Scholar
  79. 79.
    Kausel, E., Roësset, J.: Stiffness matrices for layered soils. Bulletin of the Seismological Society of America 71(6), 1743–1761 (1981)Google Scholar
  80. 80.
    Kawaharazuka, T., Hiramatsu, T., Ohkawa, H., Koyasu, M.: Experimental study on vibration reduction by isolated railway. In: Proceedings of InterNoise 1996, pp. 1549–1552 (1996)Google Scholar
  81. 81.
    Kim, M., Lee, P., Kim, D., Kwon, H.: Vibration isolation using flexible rubber chip barriers. In: Schmid, G., Chouw, N. (eds.) Proceedings of the International Workshop Wave 2000, Wave Propagation, Moving Load, Vibration Reduction, pp. 289–298. A.A Balkema, Amsterdam (2000)Google Scholar
  82. 82.
    Knothe, K., Grassie, S.: Modelling of railway track and vehicle/track interaction at high frequencies. Vehicle Systems Dynamics 22, 209–262 (1993)Google Scholar
  83. 83.
    Knothe, K., Wu, Y.: Receptance behaviour of railway track and subgrade. Archive of Applied Mechanics 68, 457–470 (1998)zbMATHGoogle Scholar
  84. 84.
    Kouroussis, G., Verlinden, O., Conti, C.: On the interest of integrating vehicle dynamics for the ground propagation of vibrations: the case of urban railway traffic. Vehicle Systems Dynamics 48(12), 1553–1571 (2010)Google Scholar
  85. 85.
    Krylov, V.: On the theory of railway-induced ground vibrations. Journal de Physique IV 4(C5), 769–772 (1994)Google Scholar
  86. 86.
    Krylov, V.: Generation of ground vibrations by superfast trains. Applied Acoustics 44, 149–164 (1995)Google Scholar
  87. 87.
    Krylov, V.: Scattering of rayleigh waves by heavy masses as method of protection against traffic-induced ground vibrations. In: Takemiya, H. (ed.) Environmental Vibrations. Prediction, Monitoring, Mitigation and Evaluation, pp. 393–398. Taylor and Francis Group, London (2005)Google Scholar
  88. 88.
    Krylov, V., Ferguson, C.: Recent progress in the theory of railway-generated ground vibrations. Proceedings of the Institute of Acoustics 17(4), 55–68 (1995)Google Scholar
  89. 89.
    Kuo, K., Hunt, H., Hussein, M.: The effect of a twin tunnel on the propagation of ground-borne vibration from an underground railway. Journal of Sound and Vibration 330(25), 6203–6222 (2011)Google Scholar
  90. 90.
    Kuppelwieser, H., Ziegler, A.: A tool for predicting vibration and structure-borne noise immissions caused by railways. Journal of Sound and Vibration 193, 261–267 (1996)Google Scholar
  91. 91.
    Lombaert, G., Degrande, G.: Ground-borne vibration due to static and dynamic axle loads of InterCity and high speed trains. Journal of Sound and Vibration 319(3-5), 1036–1066 (2009)Google Scholar
  92. 92.
    Lombaert, G., Degrande, G., Clouteau, D.: Numerical modelling of free field traffic induced vibrations. Soil Dynamics and Earthquake Engineering 19(7), 473–488 (2000)Google Scholar
  93. 93.
    Lombaert, G., Degrande, G., Galvín, P., Bongini, E., Poisson, F.: A comparison of predicted and measured ground vibrations due to high speed, passenger, and freight trains. In: Maeda, T., Gautier, P.-E., Hanson, C.E., Hemsworth, B., Nelson, J.T., Schulte-Werning, B., Thompson, D., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 231–238. Springer, Heidelberg (2012)Google Scholar
  94. 94.
    Lombaert, G., Degrande, G., Kogut, J., François, S.: The experimental validation of a numerical model for the prediction of railway induced vibrations. Journal of Sound and Vibration 297(3-5), 512–535 (2006)Google Scholar
  95. 95.
    Lombaert, G., Degrande, G., Vanhauwere, B., Vandeborght, B., François, S.: The control of ground borne vibrations from railway traffic by means of continuous floating slabs. Journal of Sound and Vibration 297(3-5), 946–961 (2006)Google Scholar
  96. 96.
    Madshus, C., Bessason, B., Hårvik, L.: Prediction model for low frequency vibration from high speed railways on soft ground. Journal of Sound and Vibration 193(1), 195–203 (1996)Google Scholar
  97. 97.
    Madshus, C., Kaynia, A.: High-speed railway lines on soft ground: dynamic behaviour at critical train speed. Journal of Sound and Vibration 231(3), 689–701 (2000)Google Scholar
  98. 98.
    Massarsch, K.: Vibration isolation using gas-filled cushions. In: Proceedings of the Geo-Frontiers 2005 Congress. American Society of Civil Engineers, Austin (2005)Google Scholar
  99. 99.
    Mirza, A.A., Frid, A., Nielsen, J.C.O., Jones, C.J.C.: Ground vibrations induced by railway traffic - the influence of vehicle parameters. In: Maeda, T., Gautier, P.-E., Hanson, C.E., Hemsworth, B., Nelson, J.T., Schulte-Werning, B., Thompson, D., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 259–266. Springer, Heidelberg (2012)Google Scholar
  100. 100.
    Müller, K., Grundmann, H., Lenz, S.: Nonlinear interaction between a moving vehicle and a plate elastically mounted on a tunnel. Journal of Sound and Vibration 310, 558–586 (2008)Google Scholar
  101. 101.
    Nazarian, S., Desai, M.: Automated surface wave method: field testing. Journal of Geotechnical Engineering, Proceedings of the ASCE 119(7), 1094–1111 (1993)Google Scholar
  102. 102.
    Nelson, J.: Recent developments in ground-borne noise and vibration control. Journal of Sound and Vibration 193(1), 367–376 (1996)Google Scholar
  103. 103.
    Nelson, J.: Prediction of ground vibrations from train using seismic reflectivity methods for a porous soil. Journal of Sound and Vibration 231(3), 727–737 (2000)Google Scholar
  104. 104.
    Nelson, J., Saurenman, H.: A prediction procedure for rail transportation groundborne noise and vibration. Transportation Research Record 1143, 26–35 (1987)Google Scholar
  105. 105.
    Nielsen, J., Igeland, A.: Vertical dynamic interaction between train and track-influence of wheel and rail imperfections. Journal of Sound and Vibration 187(5), 825–839 (1995)Google Scholar
  106. 106.
    Nielsen, J., Oscarsson, J.: Simulation of dynamic train-track interaction with state-dependent track properties. Journal of Sound and Vibration 275, 515–532 (2004)Google Scholar
  107. 107.
    O’Brien, J., Rizos, D.: A 3D FEM-BEM methodology for simulation of high speed train induced vibrations. Soil Dynamics and Earthquake Engineering 25, 289–301 (2005)Google Scholar
  108. 108.
    ORE. Question C116: Wechselwirkung zwischen Fahrzeugen und gleis, Bericht Nr. 1: Spektrale Dichte der Unregelmässigkeiten in der Gleislage. Technical report, Office for Research and Experiments of the International Union of Railways, Utrecht, NL (1971)Google Scholar
  109. 109.
    Oscarsson, J.: Simulation of train-track interaction with stochastic track properties. Vehicle Systems Dynamics 37(6), 449–469 (2002)Google Scholar
  110. 110.
    Peplow, A., Jones, C., Petyt, M.: Surface vibration propagation over a layered halfspace with an inclusion. Applied Acoustics 56, 283–296 (1999)Google Scholar
  111. 111.
    Peplow, A., Kaynia, A.: Prediction and validation of traffic vibration reduction due to cement column stabilization. Soil Dynamics and Earthquake Engineering 27, 793–802 (2007)Google Scholar
  112. 112.
    Peris, E., Woodcock, J., Sica, G., Moorhouse, A., Waddington, D.: Annoyance due to railway vibration at different times of the day. Journal of the Acoustical Society of America 131(2), 191–196 (2012)Google Scholar
  113. 113.
    Phillips, J.E., Nelson, J.T.: Analysis and design of new floating slab track for special trackwork using finite element analysis (FEA). In: Maeda, T., Gautier, P.-E., Hanson, C.E., Hemsworth, B., Nelson, J.T., Schulte-Werning, B., Thompson, D., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 275–282. Springer, Heidelberg (2012)Google Scholar
  114. 114.
    Pyl, L., Degrande, G., Clouteau, D.: Validation of a source-receiver model for road traffic induced vibrations in buildings. II: Receiver model. ASCE Journal of Engineering Mechanics 130(12), 1394–1406 (2004)Google Scholar
  115. 115.
    Klæboe, R., Hårvik, L., Turunen-Rise, I.H., Madshus, C.: Vibration in dwellings from road and rail traffic-part ii: exposure-effect relationships based on ordinal logit and logistic regression models. Applied Acoustics 64, 89–109 (2003)Google Scholar
  116. 116.
    Rayleigh, J.: On waves propagated along the plane surface of an elastic solid. Proceedings of the London Mathematical Society 17, 4–11 (1887)Google Scholar
  117. 117.
    Read, W.: Stress analysis for compressible viscoelastic materials. Journal of Applied Physics 21, 671–674 (1950)zbMATHMathSciNetGoogle Scholar
  118. 118.
    Rhayma, N., Bressolette, P., Breul, P., Fogli, M., Saussine, G.: A probabilistic approach for estimating the behavior of railway tracks. Engineering Structures 33, 2120–2133 (2011)Google Scholar
  119. 119.
    Richart, F., Hall, J., Woods, R.: Vibrations of soils and foundations. Prentice-Hall, Englewood Cliffs (1970)Google Scholar
  120. 120.
    Rix, G., Lai, C., Spang Jr., A.: In situ measurement of damping ratio using surface waves. Journal of Geotechnical and Geoenvironmental Engineering, Proceedings of the ASCE 126(5), 472–480 (2000)Google Scholar
  121. 121.
    Rizzo, F., Shippy, D.: An application of the correspondence principle of linear viscoelasticity theory. SIAM Journal on Applied Mathematics 21(2), 321–330 (1971)zbMATHGoogle Scholar
  122. 122.
    Schevenels, M., Degrande, G., Lombaert, G.: The influence of the depth of the ground water table on free field road traffic induced vibrations. International Journal for Numerical and Analytical Methods in Geomechanics 28(5), 395–419 (2004)zbMATHGoogle Scholar
  123. 123.
    Schevenels, M., François, S., Degrande, G.E.: An ElastoDynamics Toolbox for MATLAB. Computers & Geosciences 35(8), 1752–1754 (2009)Google Scholar
  124. 124.
    Schevenels, M., Lombaert, G., Degrande, G., François, S.: A probabilistic assessment of resolution in the SASW test and its impact on the prediction of ground vibrations. Geophysical Journal International 172(1), 262–275 (2008)Google Scholar
  125. 125.
    Schillemans, L.: Impact of sound and vibration of the north-south high-speed railway connection through the city of Antwerp, Belgium. Journal of Sound and Vibration 267, 637–649 (2003)Google Scholar
  126. 126.
    Schulte-Werning, B., Asmussen, B., Behr, W., Degen, K.G., Garburg, R.: Advancements in noise and vibration abatement to support the noise reduction policy strategy of deutsche bahn. In: Maeda, T., Gautier, P.-E., Hanson, C.E., Hemsworth, B., Nelson, J.T., Schulte-Werning, B., Thompson, D., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 9–16. Springer, Heidelberg (2012)Google Scholar
  127. 127.
    Semblat, J.-F., Pecker, A.: Waves and vibrations in soils: earthquakes, traffic, shocks, construction works. IUSS Press, Pavia (2009)Google Scholar
  128. 128.
    Sheng, X., Jones, C., Petyt, M.: Ground vibration generated by a harmonic load acting on a railway track. Journal of Sound and Vibration 225(1), 3–28 (1999)Google Scholar
  129. 129.
    Sheng, X., Jones, C., Petyt, M.: Ground vibration generated by a load moving along a railway track. Journal of Sound and Vibration 228(1), 129–156 (1999)Google Scholar
  130. 130.
    Sheng, X., Jones, C., Thompson, D.: A comparison of a theoretical model for quasi-statically and dynamically induced environmental vibration from trains with measurements. Journal of Sound and Vibration 267(3), 621–635 (2003)Google Scholar
  131. 131.
    Sheng, X., Jones, C., Thompson, D.: A theoretical model for ground vibration from trains generated by vertical track irregularities. Journal of Sound and Vibration 272(3-5), 937–965 (2004)Google Scholar
  132. 132.
    Sheng, X., Jones, C., Thompson, D.: Modelling ground vibrations from railways using wavenumber finite- and boundary-element methods. Proceedings of the Royal Society A - Mathematical, Physical and Engineering Sciences 461, 2043–2070 (2005)zbMATHMathSciNetGoogle Scholar
  133. 133.
    Sheng, X., Jones, C., Thompson, D.: Prediction of ground vibration from trains using the wavenumber finite and boundary element methods. Journal of Sound and Vibration 293, 575–586 (2006)Google Scholar
  134. 134.
    Steenbergen, M., Metrikine, A.: The effect of the interface conditions on the dynamic response of a beam on a half-space to a moving load. European Journal of Mechanics, A/Solids 26, 33–54 (2007)zbMATHMathSciNetGoogle Scholar
  135. 135.
    Stichting Bouwresearch. SBR deel A: Schade aan gebouwen door trillingen: meet- en beoordelingsrichtlijn (2002)Google Scholar
  136. 136.
    Stichting Bouwresearch. SBR deel B: Hinder voor personen in gebouwen door trillingen: meet- en beoordelingsrichtlijn (2002)Google Scholar
  137. 137.
    Stichting Bouwresearch. SBR deel C: Storing aan apparatuur door trillingen: meet- en beoordelingsrichtlijn (2002)Google Scholar
  138. 138.
    Takemiya, H., Fujiwara, A.: Wave propagation/impediment in a stratum and wave impeding block (WIB) measured for SSI response reduction. Soil Dynamics and Earthquake Engineering 13, 49–61 (1994)Google Scholar
  139. 139.
    Takemiya, H., Bian, X.C.: Shinkansen high-speed train induced ground vibrations in view of viaduct-ground interaction. Soil Dynamics and Earthquake Engineering 27, 506–520 (2007)Google Scholar
  140. 140.
    Thompson, D.: Railway noise and vibration: mechanisms, modelling, and means of control. Elsevier, Oxford (2009)Google Scholar
  141. 141.
    Thomson, W.: Transmission of elastic waves through a stratified solid medium. Journal of Applied Physics 21, 89–93 (1950)zbMATHMathSciNetGoogle Scholar
  142. 142.
    Triepaischajonsak, N.: The influence of various excitation mechanisms on ground vibration from trains. Ph.D. thesis, University of Southampton (2011)Google Scholar
  143. 143.
    Triepaischajonsak, N., Thompson, D.J., Jones, C.J.C., Ryue, J.: Track-based control measures for ground vibration. The influence of Quasi-static Loads and Dynamic Excitation. In: Maeda, T., Gautier, P.-E., Hanson, C.E., Hemsworth, B., Nelson, J.T., Schulte-Werning, B., Thompson, D., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 249–257. Springer, Heidelberg (2012)Google Scholar
  144. 144.
    Turunen-Rise, I., Brekke, A., Hårvik, L., Madshus, C., Klæboe, R.: Vibration in dwellings from road and rail traffic-part i: a new norwegian measurement standard and classification system. Applied Acoustics 64, 71–87 (2003)Google Scholar
  145. 145.
    Udías, A.: Principles of seismology. Cambridge University Press, Cambridge (1999)Google Scholar
  146. 146.
    Varandas, J., Hölscher, P., Silva, M.: Dynamic behaviour of railway tracks on transitions zones. Computers and Structures 89, 1468–1479 (2011)Google Scholar
  147. 147.
    Verbraken, H., Eysermans, H., Dechief, E., François, S., Lombaert, G., Degrande, G.: Verification of an empirical prediction method for railway induced vibration. In: Maeda, T., Gautier, P.-E., Hanson, C.E., Hemsworth, B., Nelson, J.T., Schulte-Werning, B., Thompson, D., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 239–247. Springer, Heidelberg (2012)Google Scholar
  148. 148.
    Verbraken, H., Lombaert, G., Degrande, G.: Verification of an empirical prediction method for railway induced vibrations by means of numerical simulations. Journal of Sound and Vibration 330(8), 1692–1703 (2011)Google Scholar
  149. 149.
    Villot, M., Ropars, P., Jean, P., Bongini, E., Poisson, F.: Modeling the influence of structural modifications on the response of a building to railway vibration. Noise Control Engineering Journal 59(6), 641–651 (2011)Google Scholar
  150. 150.
    Wettschureck, R., Kurze, U.: Einfügungsdämmass von Unterschottermatten. Acustica 58, 177–182 (1985)Google Scholar
  151. 151.
    Wilson, G., Saurenman, H., Nelson, J.: Control of ground-borne noise and vibration. Journal of Sound and Vibration 87(2), 339–350 (1983)Google Scholar
  152. 152.
    With, C., Metrikine, A., Bodare, A.: Identification of effective properties of the railway substructure in the low-frequency range using a heavy oscillating unit on the track. Archive of Applied Mechanics 80, 959–968 (2010)zbMATHGoogle Scholar
  153. 153.
    Woods, R.: Screening of surface waves in soils. Journal of the Soil Mechanics and Foundation Division, Proceedings of the ASCE 94(SM4), 951–979 (1968)Google Scholar
  154. 154.
    Wu, T., Thompson, D.: On the parametric excitation of the wheel/track system. Journal of Sound and Vibration 278(4-5), 725–747 (2004)Google Scholar
  155. 155.
    Xia, H., Zhang, N., Cao, Y.: Experimental study of train-induced vibrations of environments and buildings. Journal of Sound and Vibration 280, 1017–1029 (2005)Google Scholar
  156. 156.
    Yang, Y., Hung, H.: A 2.5D finite-infinite element approach for modelling visco-elastic bodies subjected to moving loads. International Journal for Numerical Methods in Engineering 51, 1317–1336 (2001)zbMATHGoogle Scholar
  157. 157.
    Yang, Y., Hung, H.: Soil vibrations caused by underground moving trains. Journal of Geotechnical and Geoenvironmental Engineering, Proceedings of the ASCE 134(11), 1633–1644 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • G. Lombaert
    • 1
    Email author
  • G. Degrande
    • 1
  • S. François
    • 1
  • D. J. Thompson
    • 2
  1. 1.Department of Civil EngineeringKU LeuvenLeuvenBelgium
  2. 2.Institute of Sound and Vibration ResearchUniversity of SouthamptonSouthamptonUK

Personalised recommendations