Skip to main content

Ground-Borne Vibration due to Railway Traffic: A Review of Excitation Mechanisms, Prediction Methods and Mitigation Measures

  • Conference paper
Noise and Vibration Mitigation for Rail Transportation Systems

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 126))

Abstract

The aim of this paper is to provide a comprehensive overview of the state of the art on railway-induced ground vibration. The governing physical mechanisms, prediction methods, and mitigation measures of ground-borne vibration are discussed, with focus on low frequency feelable vibration and the case of railway traffic at grade. In order to clarify the importance of quasi-static and dynamic excitation, the basic problems of a moving load with constant magnitude and harmonic magnitude are discussed first. Dynamic excitation due to wheel and track unevenness and parametric excitation is shown to be the dominant source of environmental vibration in most cases. Next, an overview of prediction methods for ground-borne vibration is given. The advantages and limitations of numerical methods, based on physical or mechanical models, and empirical models, derived from measured data, are discussed. Finally, the mitigation of railway-induced ground vibration is considered, where the focus goes to mitigation measures at source (wheel and rail unevenness, rolling stock, track) and measures on the transmission path (trenches and barriers, wave impeding blocks, subgrade stiffening, and heavy masses next to the track). In conclusion, a number of open points requiring further research is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achenbach, J.: Wave propagation in elastic solids. North-Holland Series in Applied Mathematics and Mechanics, vol. 16. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  2. Adam, D., Vogel, A., Zimmermann, A.: Ground improvement techniques beneath existing rail tracks. Ground Improvement 11(4), 229–235 (2007)

    Google Scholar 

  3. Adolfsson, K., Andréasson, B., Bengtson, P.-E., Bodare, A., Madshus, C., Massarch, R., Wallmark, G., Zackrisson, P.: High speed lines on soft ground. Evaluation and analyses of measurements from the West Coast Line. Technical report, Banverket, Sweden (1999)

    Google Scholar 

  4. Aki, K., Richards, P.: Quantitative seismology, 2nd edn. University Science Books, Sausalito (2002)

    Google Scholar 

  5. Andersen, L., Jones, C.: Coupled boundary and finite element analysis of vibration from railway tunnels – a comparison of two- and three-dimensional models. Journal of Sound and Vibration 293(3-5), 611–625 (2006)

    Google Scholar 

  6. Andersen, L., Nielsen, S.: Reduction of ground vibration by means of barriers or soil improvement along a railway track. Soil Dynamics and Earthquake Engineering 25, 701–716 (2005)

    Google Scholar 

  7. Aubry, D., Clouteau, D., Bonnet, G.: Modelling of wave propagation due to fixed or mobile dynamic sources. In: Chouw, N., Schmid, G. (eds.) Wave Propagation and Reduction of Vibrations Workshop Wave 1994, pp. 109–121. Ruhr Universität Bochum, Germany (1994)

    Google Scholar 

  8. Auersch, L.: Wave propagation in layered soils: theoretical solution in wavenumber domain and experimental results of hammer and railway traffic excitation. Journal of Sound and Vibration 173(2), 233–264 (1994)

    MATH  Google Scholar 

  9. Auersch, L.: The excitation of ground vibration by rail traffic: theory of vehicle-track-soil interaction and measurements on high-speed lines. Journal of Sound and Vibration 284(1-2), 103–132 (2005)

    Google Scholar 

  10. Auersch, L.: Ground vibration due to railway traffic – The calculation of the effects of moving static loads and their experimental verification. Journal of Sound and Vibration 293, 599–610 (2006)

    Google Scholar 

  11. Bedford, A., Drumheller, D.: Introduction to elastic wave propagation. John Wiley and Sons (1993)

    Google Scholar 

  12. Berggren, E.: Railway Track Stiffness. Dynamic Measurements and Evaluation for Efficient Maintenance. Ph.D. thesis, Royal Institute of Technology (KTH) (2009)

    Google Scholar 

  13. Berggren, E., Kaynia, A., Dehlbom, B.: Identification of substructure properties of railway tracks by dynamic stiffness measurements and simulations. Journal of Sound and Vibration 329(19), 3999–4016 (2010)

    Google Scholar 

  14. Beskos, D., Dasgupta, B., Vardoulakis, I.: Vibration isolation using open or filled trenches. Part I: 2-D homogeneous soil. Computational Mechanics 1, 43–63 (1986)

    MATH  Google Scholar 

  15. Biot, M.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low-frequency range. Journal of the Acoustical Society of America 28(2), 168–178 (1956)

    MathSciNet  Google Scholar 

  16. Biot, M.: Theory of propagation of elastic waves in a fluid-saturated porous solid. II. high-frequency range. Journal of the Acoustical Society of America 28(2), 179–191 (1956)

    MathSciNet  Google Scholar 

  17. Bongini, E., Lombaert, G., François, S., Degrande, G.: A parametric study of the impact of mitigation measures on ground borne vibration due to railway traffic. In: De Roeck, G., Degrande, G., Lombaert, G., Müller, G. (eds.) Proceedings of the 8th International Conference on Structural Dynamics EURODYN 2011, pp. 663–670. CD-ROM, Leuven (2011)

    Google Scholar 

  18. Bovey, E.: Development of an impact method to determine the vibration transfer characteristics of railway installations. Journal of Sound and Vibration 87(2), 357–370 (1983)

    Google Scholar 

  19. British Standards Institution. BS 6472:1992: Evaluation of human exposure to vibration in buildings (1 Hz to 80 Hz) (1992)

    Google Scholar 

  20. Clouteau, D., Arnst, M., Al-Hussaini, T., Degrande, G.: Freefield vibrations due to dynamic loading on a tunnel embedded in a stratified medium. Journal of Sound and Vibration 283(1-2), 173–199 (2005)

    Google Scholar 

  21. Costa, P., Calçada, R., Cardoso, A.: Ballast mats for the reduction of railway traffic vibrations. numerical study. Soil Dynamics and Earthquake Engineering 42, 137–150 (2012)

    Google Scholar 

  22. Costa, P., Calçada, R., Cardoso, A., Bodare, A.: Influence of soil non-linearity on the dynamic response of high-speed railway tracks. Soil Dynamics and Earthquake Engineering 30(4), 221–235 (2010)

    Google Scholar 

  23. Coulier, P., Dijckmans, A., Jiang, J., Thompson, D.J., Degrande, G., Lombaert, G.: Stiff wave barriers for the mitigation of railway induced vibrations. In: Nielsen, J.C.O., Anderson, D., Gautier, P.-E., Iida, M., Nelson, J.T., Thompson, D., Tielkes, T., Towers, D.A., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 539–546. Springer, Heidelberg (2015)

    Google Scholar 

  24. Coulier, P., François, S., Degrande, G., Lombaert, G.: Subgrade stiffening next to the track as a wave impeding barrier for railway induced vibrations. Soil Dynamics and Earthquake Engineering 48, 119–131 (2013)

    Google Scholar 

  25. Cui, F., Chew, C.: The effectiveness of floating slab track system - Part I. receptance methods. Applied Acoustics 61, 441–453 (2000)

    Google Scholar 

  26. Degrande, G., Clouteau, D., Othman, R., Arnst, M., Chebli, H., Klein, R., Chatterjee, P., Janssens, B.: A numerical model for ground-borne vibrations from underground railway traffic based on a periodic finite element - boundary element formulation. Journal of Sound and Vibration 293(3-5), 645–666 (2006)

    Google Scholar 

  27. Degrande, G., De Roeck, G.: Effectiviteit van een trillingsisolerend scherm in het station van het Leopoldkwartier te Brussel. Report to Dynamic Engineering, Department of Civil Engineering, KU Leuven (December 1992)

    Google Scholar 

  28. Degrande, G., Lombaert, G.: An efficient formulation of Krylov’s prediction model for train induced vibrations based on the dynamic reciprocity theorem. Journal of the Acoustical Society of America 110(3), 1379–1390 (2001)

    Google Scholar 

  29. Deutsches Institut für Normung. DIN 45672 Teil 2: Schwingungsmessungen in der Umgebung von Schienenverkehrswegen: Auswerteverfahren (1995)

    Google Scholar 

  30. Deutsches Institut für Normung. DIN 4150 Teil 2: Erschütterungen im Bauwesen, Einwirkungen auf Menschen in Gebäuden (1999)

    Google Scholar 

  31. Deutsches Institut für Normung. DIN 4150 Teil 3: Erschütterungen im Bauwesen, Einwirkungen auf bauliche Anlagen (1999)

    Google Scholar 

  32. Dieterman, H., Metrikine, A.: The equivalent stiffness of a halfspace interacting with a beam. Critical velocities of a moving load along the beam. European Journal of Mechanics, A/Solids 15(1), 67–90 (1996)

    MATH  Google Scholar 

  33. Dieterman, H., Metrikine, A.: Critical velocities of a harmonic load moving uniformly along an elastic layer. Journal of Applied Mechanics, Transactions of the ASME 64(3), 596–600 (1997)

    MATH  Google Scholar 

  34. Dijckmans, A., Ekblad, A., Smekal, A., Degrande, G., Lombaert, G.: A sheet piling wall as a wave barrier for train induced vibrations. In: Papadrakakis, M., Papadopoulos, V., Plevris, V. (eds.) Proceedings of the 4th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, COMPDYN 2013, Kos Island, Greece. CD-ROM (June 2013)

    Google Scholar 

  35. Ditzel, A., Herman, G., Drijkoningen, G.: Seismograms of moving trains: a comparison of theory and measurements. Journal of Sound and Vibration 248(4), 635–652 (2001)

    Google Scholar 

  36. Ekevid, T., Lane, H., Wiberg, N.-E.: Adaptive solid wave propagation – influences of boundary conditions in high-speed train applications. Computer Methods in Applied Mechanics and Engineering 195, 236–250 (2006)

    MATH  Google Scholar 

  37. Ekevid, T., Wiberg, N.-E.: Wave propagation related to high-speed train. A scaled boundary FE-approach for unbounded domains. Computer Methods in Applied Mechanics and Engineering 191, 3947–3964 (2002)

    MATH  Google Scholar 

  38. Esveld, C.: Modern railway track, 2nd edn. MRT-Productions, Zaltbommel (2001)

    Google Scholar 

  39. Fenton, G.: Random field modeling of CPT data. Journal of Geotechnical and Geoenvironmental Engineering, Proceedings of the ASCE 125(6), 486–535 (1999)

    Google Scholar 

  40. Fiala, P., Degrande, G., Augusztinovicz, F.: Numerical modelling of ground borne noise and vibration in buildings due to surface rail traffic. Journal of Sound and Vibration 301(3-5), 718–738 (2007)

    Google Scholar 

  41. Fiala, P., Gupta, S., Degrande, G., Augusztinovicz, F.: A parametric study on countermeasures to mitigate subway traffic induced vibration and noise in buildings. In: Sas, P., Bergen, B. (eds.) Proceedings of ISMA 2008 International Conference on Noise and Vibration Engineering, Leuven, pp. 2751–2764 (September 2008)

    Google Scholar 

  42. Forrest, J., Hunt, H.: Ground vibration generated by trains in underground tunnels. Journal of Sound and Vibration 294, 706–736 (2006)

    Google Scholar 

  43. Forrest, J., Hunt, H.: A three-dimensional tunnel model for calculation of train-induced ground vibration. Journal of Sound and Vibration 294, 678–705 (2006)

    Google Scholar 

  44. François, S., Pyl, L., Masoumi, H., Degrande, G.: The influence of dynamic soil-structure interaction on traffic induced vibrations in buildings. Soil Dynamics and Earthquake Engineering 27(7), 655–674 (2007)

    Google Scholar 

  45. François, S., Schevenels, M., Lombaert, G., Galvín, P., Degrande, G.: A 2.5D coupled FE-BE methodology for the dynamic interaction between longitudinally invariant structures and a layered halfspace. Computer Methods in Applied Mechanics and Engineering 199(23-24), 1536–1548 (2010)

    MATH  Google Scholar 

  46. François, S., Schevenels, M., Thyssen, B., Borgions, J., Degrande, G.: Design and efficiency of a vibration isolating screen in the soil. Soil Dynamics and Earthquake Engineering 39, 113–127 (2012)

    Google Scholar 

  47. Galvín, P., Romero, A., Domínguez, J.: Fully three-dimensional analysis of high-speed train–track–soil–structure dynamic interaction. Journal of Sound and Vibration 329, 5147–5163 (2010)

    Google Scholar 

  48. Garcia-Bennett, A., Jones, C.J.C., Thompson, D.J.: A numerical investigation of railway ground vibration mitigation using a trench in a layered soil. In: Maeda, T., Gautier, P.-E., Hanson, C.E., Hemsworth, B., Nelson, J.T., Schulte-Werning, B., Thompson, D., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 315–322. Springer, Heidelberg (2012)

    Google Scholar 

  49. Gidlöf-Gunnarsson, A., Ögren, M., Terson, J., Öhrström, E.: Railway noise annoyance and the importance of number of trains, ground vibration, and building situational factors. Noise Health 14, 190–201 (2012)

    Google Scholar 

  50. Grassie, S.: Rail irregularities, corrugation and acoustic roughness: characteristics, significance and effects of reprofiling. Journal of Rail and Rapid Transit 226(5), 542–557 (2012)

    Google Scholar 

  51. Guigou-Carter, C., Villot, M., Guillerme, B., Petit, C.: Analytical and experimental study of sleeper SAT S312 in slab track SATEBA system. Journal of Sound and Vibration 293(3-5), 878–887 (2006); Proceedings of the 8th International Workshop on Railway Noise

    Google Scholar 

  52. Hanson, C., Towers, D., Meister, L.: High-speed ground transportation noise and vibration impact assessment. HMMH Report 293630-4, U.S. Department of Transportation, Federal Railroad Administration, Office of Railroad Development (October 2005)

    Google Scholar 

  53. Hanson, C., Towers, D., Meister, L.: Transit noise and vibration impact assessment. Report FTA-VA-90-1003-06, U.S. Department of Transportation, Federal Transit Admininistration, Office of Planning and Environment (May 2006)

    Google Scholar 

  54. Haskell, N.: The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America 73, 17–43 (1953)

    MathSciNet  Google Scholar 

  55. He, X., Kawatani, M., Nishiyama, S.: An analytical approach to train-induced site vibration around shinkansen viaducts. Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance 6(6), 689–701 (2010)

    Google Scholar 

  56. Heckl, M., Hauck, G., Wettschureck, R.: Structure-borne sound and vibration from rail traffic. Journal of Sound and Vibration 193(1), 175–184 (1996)

    Google Scholar 

  57. Hemsworth, B.: Reducing groundborne vibrations: state of the art study. Journal of Sound and Vibration 231(3), 703–709 (2000)

    Google Scholar 

  58. Hood, R., Greer, R., Breslin, M., Williams, P.: The calculation and assessment of ground-borne noise and perceptible vibration from trains in tunnels. Journal of Sound and Vibration 193, 215–225 (1996)

    Google Scholar 

  59. Hung, H., Yang, Y., Chang, D.: Wave barriers for reduction of train-induced vibrations in soils. Journal of Geotechnical Engineering, Proceedings of the ASCE 130(12), 1283–1291 (2004)

    Google Scholar 

  60. Hunt, H.: Modelling of rail roughness for the evaluation of vibration-isolation measures. In: 12th International Congress on Sound and Vibration, Lisbon, Portugal (July 2005)

    Google Scholar 

  61. Hunt, H.E.M.: Types of rail roughness and the selection of vibration isolation measures. In: Schulte-Werning, B., Thompson, D., Gautier, P.-E., Hanson, C., Hemsworth, B., Nelson, J., Maeda, T., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 99, pp. 341–347. Springer, Heidelberg (2008)

    Google Scholar 

  62. Hunt, H., Forrest, J.: Floating slab track for vibration reduction: why simple models don’t work. In: 7th International Congress on Sound and Vibration, Garmisch-Partenkirchen, Germany (July 2000)

    Google Scholar 

  63. Hunt, H., Hussein, M.: Vibration from railways: can we achieve better than +/-10 dB prediction accuracy? In: 14th International Congress on Sound and Vibration, Cairns, Australia (July 2007)

    Google Scholar 

  64. Hussein, M., Hunt, H.: A numerical model for calculating vibration from a railway tunnel embedded in a full-space. Journal of Sound and Vibration 305, 401–431 (2007)

    Google Scholar 

  65. Hyde, J., Lintern, H.: The vibrations of roads and structures. In: Minutes of Proceedings of the Institution of Civil Engineers, pp. 187–243 (1929)

    Google Scholar 

  66. International Organization for Standardization. ISO 2631-2:1997: Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration - Part 1: General requirements, 2nd edn. (1997)

    Google Scholar 

  67. International Organization for Standardization. ISO 2631-2:1999: Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration - Part 2: Vibration in buildings (1 to 80 Hz) (1999)

    Google Scholar 

  68. International Organization for Standardization. ISO 14837-1:2005 Mechanical vibration - Ground-borne noise and vibration arising from rail systems - Part 1: General guidance (2005)

    Google Scholar 

  69. Jiang, J., Toward, M.G.R., Dijckmans, A., Thompson, D.J., Degrande, G., Lombaert, G., Ryue, J.: Reducing railway induced ground-borne vibration by using trenches and buried soft barriers. In: Nielsen, J.C.O., Anderson, D., Gautier, P.-E., Iida, M., Nelson, J.T., Thompson, D., Tielkes, T., Towers, D.A., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 126, pp. 555–562. Springer, Heidelberg (2015)

    Google Scholar 

  70. Johansson, A., Nielsen, J., Bolmsvik, R., Karlstrom, A., Lunden, R.: Under sleeper pads - Influence on dynamic train-track interaction. Wear 265, 1479–1487 (2008)

    Google Scholar 

  71. Jones, C.: Use of numerical-models to determine the effectiveness of anti-vibration systems for railways. Proceedings of the Institution of Civil Engineers-Transport 105(1), 43–51 (1994)

    Google Scholar 

  72. Jones, C., Block, J.: Prediction of ground vibration from freight trains. Journal of Sound and Vibration 193(1), 205–213 (1996)

    Google Scholar 

  73. Jones, C., Thompson, D., Andreu-Medina, J.: Initial theoretical study of reducing surface-propagating vibration from trains using earthworks close to the track. In: Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven, Belgium, pp. 684–691 (July 2011)

    Google Scholar 

  74. Jones, S., Hunt, H.: The effect of inclined soil layers on surface vibration from underground railways using the thin layer method. ASCE Journal of Engineering Mechanics 137(12), 887–900 (2011)

    Google Scholar 

  75. Jones, S., Hunt, H.: Voids at the tunnel–soil interface for calculation of ground vibration from underground railways. Journal of Sound and Vibration 330(2), 245–270 (2011)

    Google Scholar 

  76. Karlström, A., Boström, A.: An analytical model for train induced ground vibrations from railways. Journal of Sound and Vibration 292, 221–241 (2006)

    Google Scholar 

  77. Kattis, S., Polyzos, D., Beskos, D.: Vibration isolation by a row of piles using a 3-D frequency domain BEM. International Journal for Numerical Methods in Engineering 46, 713–728 (1999)

    MATH  Google Scholar 

  78. Kausel, E.: Fundamental solutions in elastodynamics: a compendium. Cambridge University Press, New York (2006)

    Google Scholar 

  79. Kausel, E., Roësset, J.: Stiffness matrices for layered soils. Bulletin of the Seismological Society of America 71(6), 1743–1761 (1981)

    Google Scholar 

  80. Kawaharazuka, T., Hiramatsu, T., Ohkawa, H., Koyasu, M.: Experimental study on vibration reduction by isolated railway. In: Proceedings of InterNoise 1996, pp. 1549–1552 (1996)

    Google Scholar 

  81. Kim, M., Lee, P., Kim, D., Kwon, H.: Vibration isolation using flexible rubber chip barriers. In: Schmid, G., Chouw, N. (eds.) Proceedings of the International Workshop Wave 2000, Wave Propagation, Moving Load, Vibration Reduction, pp. 289–298. A.A Balkema, Amsterdam (2000)

    Google Scholar 

  82. Knothe, K., Grassie, S.: Modelling of railway track and vehicle/track interaction at high frequencies. Vehicle Systems Dynamics 22, 209–262 (1993)

    Google Scholar 

  83. Knothe, K., Wu, Y.: Receptance behaviour of railway track and subgrade. Archive of Applied Mechanics 68, 457–470 (1998)

    MATH  Google Scholar 

  84. Kouroussis, G., Verlinden, O., Conti, C.: On the interest of integrating vehicle dynamics for the ground propagation of vibrations: the case of urban railway traffic. Vehicle Systems Dynamics 48(12), 1553–1571 (2010)

    Google Scholar 

  85. Krylov, V.: On the theory of railway-induced ground vibrations. Journal de Physique IV 4(C5), 769–772 (1994)

    Google Scholar 

  86. Krylov, V.: Generation of ground vibrations by superfast trains. Applied Acoustics 44, 149–164 (1995)

    Google Scholar 

  87. Krylov, V.: Scattering of rayleigh waves by heavy masses as method of protection against traffic-induced ground vibrations. In: Takemiya, H. (ed.) Environmental Vibrations. Prediction, Monitoring, Mitigation and Evaluation, pp. 393–398. Taylor and Francis Group, London (2005)

    Google Scholar 

  88. Krylov, V., Ferguson, C.: Recent progress in the theory of railway-generated ground vibrations. Proceedings of the Institute of Acoustics 17(4), 55–68 (1995)

    Google Scholar 

  89. Kuo, K., Hunt, H., Hussein, M.: The effect of a twin tunnel on the propagation of ground-borne vibration from an underground railway. Journal of Sound and Vibration 330(25), 6203–6222 (2011)

    Google Scholar 

  90. Kuppelwieser, H., Ziegler, A.: A tool for predicting vibration and structure-borne noise immissions caused by railways. Journal of Sound and Vibration 193, 261–267 (1996)

    Google Scholar 

  91. Lombaert, G., Degrande, G.: Ground-borne vibration due to static and dynamic axle loads of InterCity and high speed trains. Journal of Sound and Vibration 319(3-5), 1036–1066 (2009)

    Google Scholar 

  92. Lombaert, G., Degrande, G., Clouteau, D.: Numerical modelling of free field traffic induced vibrations. Soil Dynamics and Earthquake Engineering 19(7), 473–488 (2000)

    Google Scholar 

  93. Lombaert, G., Degrande, G., Galvín, P., Bongini, E., Poisson, F.: A comparison of predicted and measured ground vibrations due to high speed, passenger, and freight trains. In: Maeda, T., Gautier, P.-E., Hanson, C.E., Hemsworth, B., Nelson, J.T., Schulte-Werning, B., Thompson, D., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 231–238. Springer, Heidelberg (2012)

    Google Scholar 

  94. Lombaert, G., Degrande, G., Kogut, J., François, S.: The experimental validation of a numerical model for the prediction of railway induced vibrations. Journal of Sound and Vibration 297(3-5), 512–535 (2006)

    Google Scholar 

  95. Lombaert, G., Degrande, G., Vanhauwere, B., Vandeborght, B., François, S.: The control of ground borne vibrations from railway traffic by means of continuous floating slabs. Journal of Sound and Vibration 297(3-5), 946–961 (2006)

    Google Scholar 

  96. Madshus, C., Bessason, B., Hårvik, L.: Prediction model for low frequency vibration from high speed railways on soft ground. Journal of Sound and Vibration 193(1), 195–203 (1996)

    Google Scholar 

  97. Madshus, C., Kaynia, A.: High-speed railway lines on soft ground: dynamic behaviour at critical train speed. Journal of Sound and Vibration 231(3), 689–701 (2000)

    Google Scholar 

  98. Massarsch, K.: Vibration isolation using gas-filled cushions. In: Proceedings of the Geo-Frontiers 2005 Congress. American Society of Civil Engineers, Austin (2005)

    Google Scholar 

  99. Mirza, A.A., Frid, A., Nielsen, J.C.O., Jones, C.J.C.: Ground vibrations induced by railway traffic - the influence of vehicle parameters. In: Maeda, T., Gautier, P.-E., Hanson, C.E., Hemsworth, B., Nelson, J.T., Schulte-Werning, B., Thompson, D., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 259–266. Springer, Heidelberg (2012)

    Google Scholar 

  100. Müller, K., Grundmann, H., Lenz, S.: Nonlinear interaction between a moving vehicle and a plate elastically mounted on a tunnel. Journal of Sound and Vibration 310, 558–586 (2008)

    Google Scholar 

  101. Nazarian, S., Desai, M.: Automated surface wave method: field testing. Journal of Geotechnical Engineering, Proceedings of the ASCE 119(7), 1094–1111 (1993)

    Google Scholar 

  102. Nelson, J.: Recent developments in ground-borne noise and vibration control. Journal of Sound and Vibration 193(1), 367–376 (1996)

    Google Scholar 

  103. Nelson, J.: Prediction of ground vibrations from train using seismic reflectivity methods for a porous soil. Journal of Sound and Vibration 231(3), 727–737 (2000)

    Google Scholar 

  104. Nelson, J., Saurenman, H.: A prediction procedure for rail transportation groundborne noise and vibration. Transportation Research Record 1143, 26–35 (1987)

    Google Scholar 

  105. Nielsen, J., Igeland, A.: Vertical dynamic interaction between train and track-influence of wheel and rail imperfections. Journal of Sound and Vibration 187(5), 825–839 (1995)

    Google Scholar 

  106. Nielsen, J., Oscarsson, J.: Simulation of dynamic train-track interaction with state-dependent track properties. Journal of Sound and Vibration 275, 515–532 (2004)

    Google Scholar 

  107. O’Brien, J., Rizos, D.: A 3D FEM-BEM methodology for simulation of high speed train induced vibrations. Soil Dynamics and Earthquake Engineering 25, 289–301 (2005)

    Google Scholar 

  108. ORE. Question C116: Wechselwirkung zwischen Fahrzeugen und gleis, Bericht Nr. 1: Spektrale Dichte der Unregelmässigkeiten in der Gleislage. Technical report, Office for Research and Experiments of the International Union of Railways, Utrecht, NL (1971)

    Google Scholar 

  109. Oscarsson, J.: Simulation of train-track interaction with stochastic track properties. Vehicle Systems Dynamics 37(6), 449–469 (2002)

    Google Scholar 

  110. Peplow, A., Jones, C., Petyt, M.: Surface vibration propagation over a layered halfspace with an inclusion. Applied Acoustics 56, 283–296 (1999)

    Google Scholar 

  111. Peplow, A., Kaynia, A.: Prediction and validation of traffic vibration reduction due to cement column stabilization. Soil Dynamics and Earthquake Engineering 27, 793–802 (2007)

    Google Scholar 

  112. Peris, E., Woodcock, J., Sica, G., Moorhouse, A., Waddington, D.: Annoyance due to railway vibration at different times of the day. Journal of the Acoustical Society of America 131(2), 191–196 (2012)

    Google Scholar 

  113. Phillips, J.E., Nelson, J.T.: Analysis and design of new floating slab track for special trackwork using finite element analysis (FEA). In: Maeda, T., Gautier, P.-E., Hanson, C.E., Hemsworth, B., Nelson, J.T., Schulte-Werning, B., Thompson, D., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 275–282. Springer, Heidelberg (2012)

    Google Scholar 

  114. Pyl, L., Degrande, G., Clouteau, D.: Validation of a source-receiver model for road traffic induced vibrations in buildings. II: Receiver model. ASCE Journal of Engineering Mechanics 130(12), 1394–1406 (2004)

    Google Scholar 

  115. Klæboe, R., Hårvik, L., Turunen-Rise, I.H., Madshus, C.: Vibration in dwellings from road and rail traffic-part ii: exposure-effect relationships based on ordinal logit and logistic regression models. Applied Acoustics 64, 89–109 (2003)

    Google Scholar 

  116. Rayleigh, J.: On waves propagated along the plane surface of an elastic solid. Proceedings of the London Mathematical Society 17, 4–11 (1887)

    Google Scholar 

  117. Read, W.: Stress analysis for compressible viscoelastic materials. Journal of Applied Physics 21, 671–674 (1950)

    MATH  MathSciNet  Google Scholar 

  118. Rhayma, N., Bressolette, P., Breul, P., Fogli, M., Saussine, G.: A probabilistic approach for estimating the behavior of railway tracks. Engineering Structures 33, 2120–2133 (2011)

    Google Scholar 

  119. Richart, F., Hall, J., Woods, R.: Vibrations of soils and foundations. Prentice-Hall, Englewood Cliffs (1970)

    Google Scholar 

  120. Rix, G., Lai, C., Spang Jr., A.: In situ measurement of damping ratio using surface waves. Journal of Geotechnical and Geoenvironmental Engineering, Proceedings of the ASCE 126(5), 472–480 (2000)

    Google Scholar 

  121. Rizzo, F., Shippy, D.: An application of the correspondence principle of linear viscoelasticity theory. SIAM Journal on Applied Mathematics 21(2), 321–330 (1971)

    MATH  Google Scholar 

  122. Schevenels, M., Degrande, G., Lombaert, G.: The influence of the depth of the ground water table on free field road traffic induced vibrations. International Journal for Numerical and Analytical Methods in Geomechanics 28(5), 395–419 (2004)

    MATH  Google Scholar 

  123. Schevenels, M., François, S., Degrande, G.E.: An ElastoDynamics Toolbox for MATLAB. Computers & Geosciences 35(8), 1752–1754 (2009)

    Google Scholar 

  124. Schevenels, M., Lombaert, G., Degrande, G., François, S.: A probabilistic assessment of resolution in the SASW test and its impact on the prediction of ground vibrations. Geophysical Journal International 172(1), 262–275 (2008)

    Google Scholar 

  125. Schillemans, L.: Impact of sound and vibration of the north-south high-speed railway connection through the city of Antwerp, Belgium. Journal of Sound and Vibration 267, 637–649 (2003)

    Google Scholar 

  126. Schulte-Werning, B., Asmussen, B., Behr, W., Degen, K.G., Garburg, R.: Advancements in noise and vibration abatement to support the noise reduction policy strategy of deutsche bahn. In: Maeda, T., Gautier, P.-E., Hanson, C.E., Hemsworth, B., Nelson, J.T., Schulte-Werning, B., Thompson, D., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 9–16. Springer, Heidelberg (2012)

    Google Scholar 

  127. Semblat, J.-F., Pecker, A.: Waves and vibrations in soils: earthquakes, traffic, shocks, construction works. IUSS Press, Pavia (2009)

    Google Scholar 

  128. Sheng, X., Jones, C., Petyt, M.: Ground vibration generated by a harmonic load acting on a railway track. Journal of Sound and Vibration 225(1), 3–28 (1999)

    Google Scholar 

  129. Sheng, X., Jones, C., Petyt, M.: Ground vibration generated by a load moving along a railway track. Journal of Sound and Vibration 228(1), 129–156 (1999)

    Google Scholar 

  130. Sheng, X., Jones, C., Thompson, D.: A comparison of a theoretical model for quasi-statically and dynamically induced environmental vibration from trains with measurements. Journal of Sound and Vibration 267(3), 621–635 (2003)

    Google Scholar 

  131. Sheng, X., Jones, C., Thompson, D.: A theoretical model for ground vibration from trains generated by vertical track irregularities. Journal of Sound and Vibration 272(3-5), 937–965 (2004)

    Google Scholar 

  132. Sheng, X., Jones, C., Thompson, D.: Modelling ground vibrations from railways using wavenumber finite- and boundary-element methods. Proceedings of the Royal Society A - Mathematical, Physical and Engineering Sciences 461, 2043–2070 (2005)

    MATH  MathSciNet  Google Scholar 

  133. Sheng, X., Jones, C., Thompson, D.: Prediction of ground vibration from trains using the wavenumber finite and boundary element methods. Journal of Sound and Vibration 293, 575–586 (2006)

    Google Scholar 

  134. Steenbergen, M., Metrikine, A.: The effect of the interface conditions on the dynamic response of a beam on a half-space to a moving load. European Journal of Mechanics, A/Solids 26, 33–54 (2007)

    MATH  MathSciNet  Google Scholar 

  135. Stichting Bouwresearch. SBR deel A: Schade aan gebouwen door trillingen: meet- en beoordelingsrichtlijn (2002)

    Google Scholar 

  136. Stichting Bouwresearch. SBR deel B: Hinder voor personen in gebouwen door trillingen: meet- en beoordelingsrichtlijn (2002)

    Google Scholar 

  137. Stichting Bouwresearch. SBR deel C: Storing aan apparatuur door trillingen: meet- en beoordelingsrichtlijn (2002)

    Google Scholar 

  138. Takemiya, H., Fujiwara, A.: Wave propagation/impediment in a stratum and wave impeding block (WIB) measured for SSI response reduction. Soil Dynamics and Earthquake Engineering 13, 49–61 (1994)

    Google Scholar 

  139. Takemiya, H., Bian, X.C.: Shinkansen high-speed train induced ground vibrations in view of viaduct-ground interaction. Soil Dynamics and Earthquake Engineering 27, 506–520 (2007)

    Google Scholar 

  140. Thompson, D.: Railway noise and vibration: mechanisms, modelling, and means of control. Elsevier, Oxford (2009)

    Google Scholar 

  141. Thomson, W.: Transmission of elastic waves through a stratified solid medium. Journal of Applied Physics 21, 89–93 (1950)

    MATH  MathSciNet  Google Scholar 

  142. Triepaischajonsak, N.: The influence of various excitation mechanisms on ground vibration from trains. Ph.D. thesis, University of Southampton (2011)

    Google Scholar 

  143. Triepaischajonsak, N., Thompson, D.J., Jones, C.J.C., Ryue, J.: Track-based control measures for ground vibration. The influence of Quasi-static Loads and Dynamic Excitation. In: Maeda, T., Gautier, P.-E., Hanson, C.E., Hemsworth, B., Nelson, J.T., Schulte-Werning, B., Thompson, D., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 249–257. Springer, Heidelberg (2012)

    Google Scholar 

  144. Turunen-Rise, I., Brekke, A., Hårvik, L., Madshus, C., Klæboe, R.: Vibration in dwellings from road and rail traffic-part i: a new norwegian measurement standard and classification system. Applied Acoustics 64, 71–87 (2003)

    Google Scholar 

  145. Udías, A.: Principles of seismology. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  146. Varandas, J., Hölscher, P., Silva, M.: Dynamic behaviour of railway tracks on transitions zones. Computers and Structures 89, 1468–1479 (2011)

    Google Scholar 

  147. Verbraken, H., Eysermans, H., Dechief, E., François, S., Lombaert, G., Degrande, G.: Verification of an empirical prediction method for railway induced vibration. In: Maeda, T., Gautier, P.-E., Hanson, C.E., Hemsworth, B., Nelson, J.T., Schulte-Werning, B., Thompson, D., de Vos, P. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems. NNFM, vol. 118, pp. 239–247. Springer, Heidelberg (2012)

    Google Scholar 

  148. Verbraken, H., Lombaert, G., Degrande, G.: Verification of an empirical prediction method for railway induced vibrations by means of numerical simulations. Journal of Sound and Vibration 330(8), 1692–1703 (2011)

    Google Scholar 

  149. Villot, M., Ropars, P., Jean, P., Bongini, E., Poisson, F.: Modeling the influence of structural modifications on the response of a building to railway vibration. Noise Control Engineering Journal 59(6), 641–651 (2011)

    Google Scholar 

  150. Wettschureck, R., Kurze, U.: Einfügungsdämmass von Unterschottermatten. Acustica 58, 177–182 (1985)

    Google Scholar 

  151. Wilson, G., Saurenman, H., Nelson, J.: Control of ground-borne noise and vibration. Journal of Sound and Vibration 87(2), 339–350 (1983)

    Google Scholar 

  152. With, C., Metrikine, A., Bodare, A.: Identification of effective properties of the railway substructure in the low-frequency range using a heavy oscillating unit on the track. Archive of Applied Mechanics 80, 959–968 (2010)

    MATH  Google Scholar 

  153. Woods, R.: Screening of surface waves in soils. Journal of the Soil Mechanics and Foundation Division, Proceedings of the ASCE 94(SM4), 951–979 (1968)

    Google Scholar 

  154. Wu, T., Thompson, D.: On the parametric excitation of the wheel/track system. Journal of Sound and Vibration 278(4-5), 725–747 (2004)

    Google Scholar 

  155. Xia, H., Zhang, N., Cao, Y.: Experimental study of train-induced vibrations of environments and buildings. Journal of Sound and Vibration 280, 1017–1029 (2005)

    Google Scholar 

  156. Yang, Y., Hung, H.: A 2.5D finite-infinite element approach for modelling visco-elastic bodies subjected to moving loads. International Journal for Numerical Methods in Engineering 51, 1317–1336 (2001)

    MATH  Google Scholar 

  157. Yang, Y., Hung, H.: Soil vibrations caused by underground moving trains. Journal of Geotechnical and Geoenvironmental Engineering, Proceedings of the ASCE 134(11), 1633–1644 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lombaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lombaert, G., Degrande, G., François, S., Thompson, D.J. (2015). Ground-Borne Vibration due to Railway Traffic: A Review of Excitation Mechanisms, Prediction Methods and Mitigation Measures. In: Nielsen, J., et al. Noise and Vibration Mitigation for Rail Transportation Systems. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44832-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44832-8_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44831-1

  • Online ISBN: 978-3-662-44832-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics