Skip to main content

Size Effects on Semiconductor Nanoparticles

  • Chapter
  • First Online:

Abstract

This chapter addresses the fundamental concepts needed to understand the impact of size reduction on the electronic structure and optoelectronic properties of semiconductor nanostructures, with emphasis on quantum confinement effects. This effect is explained by two different approaches: the “top-down” and the “bottom-up”. Subsequently, a brief description of the optical properties of semiconductor nanocrystals is presented. This is followed by sections discussing the essential characteristics of nanocrystals consisting of two (or more) different semiconductors joined together by heterointerfaces (i.e., heteronanocrystals). Moreover, the essential differences between the impact of size reduction on semiconductors in comparison to metals and insulators is discussed. The chapter ends by briefly discussing the potential applications of semiconductor nanoparticles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brynjolfsson, E., McAfee, A.: Winning the race with ever-smarter machines. MIT Sloan Manage. Rev. 53, 53 (2012)

    Google Scholar 

  2. Donega, C.D.M.: Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 40, 1512–1546 (2011)

    Article  Google Scholar 

  3. Alivisatos, A.P.: Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996)

    Article  Google Scholar 

  4. Rossetti, R., Brus, L.: Electron-hole recombination emission as a probe of surface-chemistry in aqueous CdS colloids. J. Phys. Chem. 86, 4470–4472 (1982)

    Article  Google Scholar 

  5. Gaponenko, S.V.: Introduction to Nanophotonics. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  6. Klimov, V.I.: Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 58, 635–673 (2007)

    Article  Google Scholar 

  7. Efros, A.L., Rosen, M.: The electronic structure of semiconductor nanocrystals. Annu. Rev. Mater. Sci. 30, 475–521 (2000)

    Article  Google Scholar 

  8. Lo, S.S., Mirkovic, T., Chuang, C., Burda, C., Scholes, G.D.: Emergent properties resulting from Type-II band alignment in semiconductor nanoheterostructures. Adv. Mater. 23, 180–197 (2011)

    Article  Google Scholar 

  9. Kambhampati, P.: Hot exciton relaxation dynamics in semiconductor quantum dots: radiationless transitions on the nanoscale. J. Phys. Chem. C 115, 22089–22109 (2011)

    Article  Google Scholar 

  10. Henderson, B., Imbusch, G.F.: Optical Spectroscopy of Inorganic Solids. Clarendon Press, Oxford (1989)

    Google Scholar 

  11. Bhattacharya, P., Ghosh, S., Stiff-Roberts, A.D.: Quantum dot opto-electronic devices. Annu. Rev. Mater. Res. 34, 1–40 (2004)

    Article  Google Scholar 

  12. Elzerman, J.M., Hanson, R., van Beveren, L.H.W., Witkamp, B., Vandersypen, L.M.K., Kouwenhoven, L.P.: Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004)

    Article  Google Scholar 

  13. Tian, B., Kempa, T.J., Lieber, C.M.: Single nanowire photovoltaics. Chem. Soc. Rev. 38, 16–24 (2009)

    Article  Google Scholar 

  14. Hochbaun, A.I., Yang, P.: Semiconductor nanowires for energy conversion. Chem. Rev. 110, 527–546 (2010)

    Article  Google Scholar 

  15. Hocevar, M., Immink, G., Verheijen, M., Akopian, N., Zwiller, V., Kouwenhoven, L., Bakkers, E.: Growth and optical properties of axial hybrid III-V/silicon nanowires. Nature Commun. 3, 1266 (2012)

    Article  Google Scholar 

  16. Bawendi, M.G., Steigerwald, M.L., Brus, L.E.: The quantum-mechanics of larger semiconductor clusters (quantum dots). Annu. Rev. Phys. Chem. 41, 477–496 (1990)

    Article  Google Scholar 

  17. Delerue, C., Lannoo, M.: Nanostructures: Theory and Modelling. Springer, Berlin (2004)

    Book  Google Scholar 

  18. An, J.M., Franceschetti, A., Dudiy, S.V., Zunger, A.: The peculiar electronic structure of PbSe quantum dots. Nano Lett. 6, 2728–2735 (2006)

    Article  Google Scholar 

  19. Koole, R.: Fundamentals and applications of semiconductor nanocrystals Ph.D. Thesis, Utrecht University, Utrecht (2008)

    Google Scholar 

  20. Wright, J.C.: Chemistry 623 Notes-Experimental Spectroscopy. Dept. of Chemistry, University of Wisconsin, pp. 47–69 (1990)

    Google Scholar 

  21. Lodahl, P., van Driel, A.F., Nikolaev, I.S., Irman, A., Overgaag, K., Vanmaekelbergh, D., Vos, W.L.: Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004)

    Article  Google Scholar 

  22. Rogach, A.L., Klar, T.A., Lupton, J.M., Meijerink, A., Feldmann, J.: Energy transfer with semiconductor nanocrystals. J. Mater. Chem. 19, 1208–1221 (2009)

    Article  Google Scholar 

  23. Förster, T.: Energiewanderung und Fluoreszenz. Naturwissenshaften 33, 166–175 (1946)

    Article  Google Scholar 

  24. Reiss, P., Protière, M., Li, L.: Core/shell semiconductor nanocrystals. Small 5, 154–168 (2009)

    Article  Google Scholar 

  25. Pandey, A., Guyot-Sionnest, P.: Intraband spectroscopy and band offsets of colloidal II-VI core/shell structures. J. Chem. Phys. 127, 104710 (2007)

    Article  Google Scholar 

  26. Ivanov, S.A., Piryatinski, A., Nanda, J., Tretiak, S., Zavadil, K.R., Wallace, W.O., Werder, D., Klimov, V.I.: Type-II core/shell CdS/ZnSe nanocrystals: Synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 129, 11708–11719 (2007)

    Article  Google Scholar 

  27. Donegá, C.D.M.: Formation of nanoscale spatially indirect excitons: evolution of the type-II optical character of CdTe/CdSe heteronanocrystals. Phys. Rev. B 81, 165303 (2010)

    Article  Google Scholar 

  28. Grodzińska, D., Evers, W.H., Dorland, R., van Rijssel, J., van Huis, M.A., Meijerink, A., de Mello Donegá, C., Vanmaekelbergh, D.: Two-Fold emission from the S-Shell of PbSe/CdSe core/shell quantum dots. Small 7, 3493–3501 (2011)

    Google Scholar 

  29. Klimov, V.I., Ivanov, S.A., Nanda, J., Achermann, M., Bezel, I., McGuire, J.A., Piryatinski, A.: Single-exciton optical gain in semiconductor nanocrystals. Nature 447, 441–446 (2007)

    Article  Google Scholar 

  30. Pandey, A., Guyot-Sionnest, P.: Slow electron cooling in colloidal quantum dots. Science 322, 929–932 (2008)

    Article  Google Scholar 

  31. He, J., Lo, S.S., Kim, J., Scholes, G.D.: Control of exciton spin relaxation by electron-hole decoupling in type-II nanocrystal heterostructures. Nano Lett. 8, 4007–4013 (2008)

    Article  Google Scholar 

  32. Kim, S., Fisher, B., Eisler, H., Bawendi, M.: Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 125, 11466–11467 (2003)

    Article  Google Scholar 

  33. Shirasaki, Y., Supran, G.J., Bawendi, M.G., Bulovic, V.: Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 7, 13–23 (2013)

    Article  Google Scholar 

  34. Bimberg, D., Pohl, U.W.: Quantum dots: promises and accomplishments. Mater. Today 14, 388–397 (2011)

    Article  Google Scholar 

  35. Garcıa-Santamarıa, F., Chen, Y., Vela, J., Schaller, R.D., Hollingsworth, J.A., Klimov, V.I.: Suppressed Auger recombination in “giant” nanocrystals boosts optical gain performance. Nano Lett. 9, 3482–3488 (2009)

    Article  Google Scholar 

  36. Konstantatos, G., Sargent, E.H.: Colloidal quantum dot optoelectronics and photovoltaics. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  37. Doane, T.L., Burda, C.: The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chem. Soc. Rev. 41, 2885–2911 (2012)

    Article  Google Scholar 

  38. Lunt, R.R., Osedach, T.P., Brown, P.R., Rowehl, J.A., Bulovic, V.: Practical roadmap and limits to nanostructured photovoltaics. Adv. Mater. 23, 5712–5727 (2011)

    Article  Google Scholar 

  39. Kamat, P.V.: Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. Acc. Chem. Res. 45, 1906–1915 (2012)

    Article  Google Scholar 

  40. Kramer, I.J., Sargent, E.H.: Colloidal quantum dot photovoltaics: a path forward. ACS Nano 5, 8506–8514 (2011)

    Article  Google Scholar 

  41. Nozik, A.J., Conibeer, G., Beard, M.C.: Advanced concepts in photovoltaics. Royal Society of Chemistry, Oxford (2014)

    Book  Google Scholar 

  42. Krumer, Z., Pera, S.J., van Dijk-Moes, R.J.A., Zhao, Y., de Brouwer, A.F.P., Groeneveld, E., van Sark, W.G.J.H.M., Schropp, R. E.I., Donega, C.D.M.: Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots. Sol. Energy Mater. Sol. Cells 111, 57–65 (2013)

    Google Scholar 

  43. Fan, W., Zhang, Q., Wang, Y.: Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys. Chem. Chem. Phys. 15, 2632–2649 (2013)

    Article  Google Scholar 

  44. O’Connor, T., Panov, M.S., Mereshchenko, A., Tarnovsky, A.N., Lorek, R., Perera, D., Diederich, G., Lambright, S., Moroz, P., Zamkov, M.: The effect of the charge-separating interface on exciton dynamics in photocatalytic colloidal heteronanocrystals. ACS Nano 6, 8156–8165 (2012)

    Article  Google Scholar 

  45. Groeneveld, E.: Synthesis and optical spectroscopy of (hetero)-nanocrystals. Ph.D. Thesis, Utrecht University, Utrecht (2012)

    Google Scholar 

  46. Koole, R., Allan, G., Delerue, C., Meijerink, A., Vanmaekelbergh, D., Houtepen, A.J.: Optical Investigation of Quantum Confinement in PbSe Nanocrystals at Different Points in the Brillouin Zone. Small 4, 127–133 (2008)

    Article  Google Scholar 

  47. Link, S., El-Sayed, M.A.: Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celso de Mello Donegá .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koole, R., Groeneveld, E., Vanmaekelbergh, D., Meijerink, A., de Mello Donegá, C. (2014). Size Effects on Semiconductor Nanoparticles. In: de Mello Donegá, C. (eds) Nanoparticles. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44823-6_2

Download citation

Publish with us

Policies and ethics