Skip to main content

The Nanoscience Paradigm: “Size Matters!”

  • Chapter
  • First Online:
Nanoparticles

Abstract

The essential feature of nanomaterials is that their physical and chemical properties are size dependent, making it possible to engineer the material properties not only by defining its chemical composition, but also by tailoring the size and shape of the nanostructures, and the way in which individual building blocks are assembled. This chapter addresses the origin of the size dependence of the properties of nanomaterials, which can be traced to two fundamental nanoscale effects: (a) the increase in the surface/volume ratio with decreasing size, and (b) spatial confinement effects. Furthermore, the definition and classification of nanomaterials is introduced, and the techniques used to fabricate and study them are briefly discussed, with emphasis on nanoparticles of inorganic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donega, C.D.M.: Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 40, 1512–1546 (2011)

    Article  Google Scholar 

  2. Alivisatos, A.P.: Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996)

    Article  Google Scholar 

  3. Roduner, E.: Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583–592 (2006)

    Article  Google Scholar 

  4. Haruta, M.: Chance and necessity: my encounter with gold catalysts. Angew. Chem. Int. Ed. 53, 52–56 (2014)

    Article  Google Scholar 

  5. Burda, C., Chen, X., Narayanan, R., El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005)

    Article  Google Scholar 

  6. Frey, N.A., Peng, S., Cheng, K., Sun, S.: Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532–2542 (2009)

    Article  Google Scholar 

  7. Law, M., Goldberger, J., Yang, P.: Semiconductor nanowires and nanotubes. Ann. Rev. Mater. Res. 34, 83–122 (2004)

    Article  Google Scholar 

  8. The National Nanotechnology Initiative—Strategic Plan (2004)

    Google Scholar 

  9. European Commission: Recommendation on the definition of nanomaterial, Official Journal of the European Union L275/38-40 (2011)

    Google Scholar 

  10. de Jongh, P.E., Eggenhuisen, T.M.: Nanoporous materials and confined liquids. In: Donega C.D.M. (ed.) Nanoparticles: Workhorses of Nanoscience. Springer, Heidelberg (2015) (Chapter 4)

    Google Scholar 

  11. Lekkerkerker, H.N.W., Tuinier, R.: Colloids and the Depletion Interaction. Springer, Heidelberg (2011)

    Book  Google Scholar 

  12. Holder, E., Tessler, N., Rogach, A.L.: Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices. J. Mater. Chem. 18, 1064–1078 (2008)

    Article  Google Scholar 

  13. Talapin, D.V., Lee, J., Kovalenko, M.V., Shevchenko, E.V.: Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010)

    Article  Google Scholar 

  14. Quan, Z., Fang, J.: Superlattices with non-spherical building blocks. Nano Today 5, 390–411 (2010)

    Article  Google Scholar 

  15. Vanmaekelbergh, D.: Self-assembly of colloidal nanocrystals as a route to novel classes of nanostructured materials. Nano Today 6, 419–437 (2011)

    Article  Google Scholar 

  16. Shirasaki, Y., Supran, G.J., Bawendi, M.G., Bulovic, V.: Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 7, 13–23 (2013)

    Article  Google Scholar 

  17. Kelsall, R.W., Hamley, I.W., Geoghegan, M. (eds.) Nanoscale Science and Technology, pp. 32–55. Wiley, New Jersey (2005)

    Google Scholar 

  18. Manna, L., Kudera, S.: Mechanisms underlying the growth of inorganic nanoparticles in the liquid phase. In: Cozzoli, P.D. (ed.) Advanced Wet-Chemical Synthetic Approaches to Inorganic Nanostructures, pp. 1–53. Transworld Research Network, Kerala (2008)

    Google Scholar 

  19. Bhattacharya, P., Ghosh, S., Stiff-Roberts, A.D.: Quantum dot opto-electronic devices. Annu. Rev. Mater. Res. 34, 1–40 (2004)

    Article  Google Scholar 

  20. Lu, W., Lieber, C.M.: Semiconductor nanowires. J. Phys. D Appl. Phys. 39, R387–R406 (2006)

    Article  Google Scholar 

  21. Norris, D.J., Efros, A.L., Erwin, S.C.: Doped nanocrystals. Science 319, 1776–1779 (2008)

    Google Scholar 

  22. Mocatta, D., Cohen, G., Schattner, J., Millo, O., Rabani, E., Banin, U.: Heavily doped semiconductor nanocrystal quantum dots. Science 332, 77–81 (2011)

    Article  Google Scholar 

  23. Buonsanti, R., Milliron, D.J.: Chemistry of doped colloidal nanocrystals. Chem. Mater. 25, 1305–1317 (2013)

    Article  Google Scholar 

  24. Beaulac, R., Ochsenbein, S.T., Gamelin, D.R.: Colloidal Transition-Metal-Doped Quantum Dots. In: Klimov, V.I. (ed.) Nanocrystal Quantum Dots, 2nd edn, pp. 397–453. CRC Press, Boca Raton (2010) (Chapter 7)

    Google Scholar 

  25. Meinardi, F., Colombo, A., Velizhanin, K.A., Simonutti, R., Lorenzon, M., Beverina, L., Viswanatha, R., Klimov, V.I., Brovelli, S.: Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix. Nat. Photon. 8, 392–399 (2014)

    Article  Google Scholar 

  26. Krumer, Z., Pera, S.J., van Dijk-Moes, R.J.A., Zhao, Y., de Brouwer, A.F.P., Groeneveld, E., van Sark, W.G.J.H.M., Schropp, R.E.I., Donega, C.D.M.: Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots. Sol. Energy Mater. Sol. Cells 111, 57–65 (2013)

    Article  Google Scholar 

  27. Petruska, M.A., Malko, A.V., Voyles, P.M., Klimov, V.I.: High-performance, quantum dot nanocomposites for nonlinear optical and optical gain applications. Adv. Mater. 15, 610–613 (2003)

    Article  Google Scholar 

  28. van der Stam, W., Gantapara, A.P., Akkerman, Q.A., Soligno, G., Meeldijk, J.D., van Roij, R., Dijkstra, M., Donega, C.D.M.: Self-assembly of colloidal hexagonal bipyramid- and bifrustum-shaped ZnS nanocrystals into two-dimensional superstructures. Nano Lett. 14, 1032–1037 (2014)

    Google Scholar 

  29. Meijerink, A.: Exciton dynamics and energy transfer processes in semiconductor nanocrystals. In: Rogach, A.L. (ed.) Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications, pp. 277–310. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  30. Gaponenko, S.V.: Introduction to Nanophotonics. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  31. Reed, M.A.: Quantum dots. Scient. Am. 268, 118–123 (1993)

    Article  Google Scholar 

  32. Teranishi, T., Nishida, M., Kanehara, M.: Size-tuning and optical properties of high-quality CdSe nanoparticles synthesized from Cadmium Stearate. Chem. Lett. 34, 1004–1005 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celso de Mello Donegá .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Mello Donegá, C. (2014). The Nanoscience Paradigm: “Size Matters!”. In: de Mello Donegá, C. (eds) Nanoparticles. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44823-6_1

Download citation

Publish with us

Policies and ethics