Skip to main content
Book cover

Genetik pp 165–212Cite as

Die eukaryotische Zelle und Modellorganismen

  • Chapter
  • 28k Accesses

Zusammenfassung

Die Zelle als ein Grundbaustein aller Organismen wurde bereits 1665 durch Robert Hooke (1635–1703) bei seinen Untersuchungen an Pflanzen beschrieben; er führte auch die Bezeichnung cell ein. Diese Beobachtungen waren mithilfe eines einfachen Mikroskops gemacht worden (Abb. 5.1). Obwohl in der Folge Nehemiah Grew (1614–1712) und Antoni van Leeuwenhoek (1632–1723) die mikroskopische Feinstruktur von Tieren und Pflanzen in vielen Details studierten, setzte das mangelhafte Auflösungsvermögen der frühen Mikroskope solchen Studien enge Grenzen. Erst die Verbesserungen der optischen Qualität, insbesondere durch die Korrektur sphärischer und chromatischer Aberrationen, erlaubten es, Feinheiten im Bau tierischer Gewebe zu erkennen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  • Adams MD, Celniker SE, Holt RA et al. (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Ahn SH, Diaz RL, Grunstein M et al. (2006) Histone H2B deacetylation at lysine 11 is required for yeast apoptosis induced by phosphorylation of H2B at Serine 10. Mol Cell 24:211–220

    Article  CAS  PubMed  Google Scholar 

  • Ankeny RA (2001) The natural history of Caenorhabditis elegans research. Nat Rev Genet 2:474–479

    Article  CAS  PubMed  Google Scholar 

  • Argmann CA, Chambon P, Auwerx J (2005) Mouse phenogenomics: the fast track to »systems metabolism«. Cell Metab 2:349–360

    Article  CAS  PubMed  Google Scholar 

  • Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88:557–579

    Article  CAS  PubMed  Google Scholar 

  • Barr ML, Bertram EG (1949) A morphological distinction between neurons of the male and female, and the behaviour of the nucleolar satellites during accelerated nucleoprotein synthesis. Nature 163:676–677

    Article  CAS  PubMed  Google Scholar 

  • de Besson A, Dowdy SF, Roberts JM (2008) CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14:159–169

    Article  PubMed  Google Scholar 

  • Blagosklonny MV (2012) Once again on rapamycin-induced insulin resistance and longevity: despite of or owing to. Aging 4:350–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends Genet 19:709–716

    Article  CAS  PubMed  Google Scholar 

  • van Buskirk EK, Decker PV, Chen M (2012) Photobodies in light signaling. Plant Physiol 158:52–60

    Article  CAS  PubMed  Google Scholar 

  • Carle GF, Olson MV (1985) An electrophoretic caryotyp for yeast. Proc Natl Acad Sci USA 82:3756–3760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Celis JF (2003) Pattern formation in the Drosophila wing: the development of the veins. BioEssays 25:443–451

    Article  PubMed  Google Scholar 

  • Christensen K, Johnson TE, Vaupel JW (2006) The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet 7: 436–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territorries, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  CAS  PubMed  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Flemming W (1882) Zellsubstanz, Kern und Zelltheilung. F. C. W. Vogel, Leipzig Folle GA (2008) Nuclear architecture, chromosome domains and genetic damage. Mutat Res 658:172–183

    Google Scholar 

  • Frankel S, Rogina B (2012) Indy mutants: live long and prosper. Front Genet 3:1–3

    Article  Google Scholar 

  • Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertiliy. Genetics 118:75–86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furutani-Seiki M, Wittbrodt J (2004) Medaka and zebrafish, an evolutionary twin study. Mech Dev 121:629–637

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Kepp O, Trojel-Hansen C et al. (2012) Mitochondrial control of cellular life, stress, and death. Circ Res 111:1198–1207

    Article  CAS  PubMed  Google Scholar 

  • Gaszner M, Felsenfeld G (2006) Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 7:703–713

    Article  CAS  PubMed  Google Scholar 

  • Geyer PK, Vitalini MW, Wallrath LL (2011) Nuclear organization: taking a position on gene expression. Curr Opin Cell Biol 23:354–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H et al. (1996) Life with 6000 genes. Science 274:646–563

    Article  Google Scholar 

  • Gordon JW, Scangos GA, Plotkin DJ et al. (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77:7380–7384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green EL (Hrsg) (1966) Biology of the Laboratory Mouse, 2. Aufl. McGraw-Hill, New York

    Google Scholar 

  • Guénet JL (2011) Animal models of human genetic diseases: do they need to be faithful to be useful? Mol Genet Genomics 286:1–20

    Article  PubMed  Google Scholar 

  • Haffter P, Granato M, Brand M et al. (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    CAS  PubMed  Google Scholar 

  • Handwerger KE, Gall JG (2006) Subnuclear organelles: new insights into form and function. Trends Cell Biol 16:19–26

    Article  CAS  PubMed  Google Scholar 

  • Haskins FA, Tissieres A, Mitchell HK et al. (1953) Cytochromes and the succinic acid oxidase system of poky strains of Neurospora. J Biol Chem 200: 819–826

    CAS  PubMed  Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci USA 75:1929–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt IJ, Harding AE, Morgan-Hughes JA (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331: 717–719

    Article  CAS  PubMed  Google Scholar 

  • Howard A, Pelc SR (1953) Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. In: Symposium on chromosome breakage. Heredity 6 (Suppl):261–273

    Google Scholar 

  • Howe K, Clark MD, Torroja CF et al. (2013) The zebrafisch reference genome sequence and its relationship to the human genome. Nature 496: 498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • Johnston DS (2002) The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet 3:176–188

    Article  Google Scholar 

  • Jorgensen EM, Mango SE (2002) The art and design of genetic screens: Caenorhabditis elegans. Nat Rev Genet 3:356–369

    Article  CAS  PubMed  Google Scholar 

  • Kalueff AV, Stewart AM, Kyzar EJ et al. (2012) Time to recognize zebrafish ›affective‹ behavior. Behaviour 149:1019–1036

    Article  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiefel BR, Gilson PR, Beech PL (2006) Cell biology of mitochondrial dynamics. Intern Rev Cytology 254:151–213

    Article  CAS  Google Scholar 

  • Kihlman B, Eriksson T, Odmark G (1967) Studies on the effects of phleomycin on chromosome structure and nucleic acid synthesis in Vicia faba. Mutat Res 4:783–790

    Article  CAS  PubMed  Google Scholar 

  • Kück U (Hrsg) (2005) Praktikum der Molekulargenetik. Springer, Berlin

    Book  Google Scholar 

  • Kuro-o M, Matsumura Y, Aizawa H et al. (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    Article  CAS  PubMed  Google Scholar 

  • Kurosu H, Kuro-o M (2009) The Klotho gene family as a regulator of endocrine fibroblast growth factors. Mol Cell Endocrinol 299:72–78

    Article  CAS  PubMed  Google Scholar 

  • Kyriakouli DS, Boesch P, Taylor RW et al. (2008) Progress and prospects: gene therapy for mitochondrial DNA disease. Gene Therapy 15:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Labrador M, Corces VG (2002) Setting the boundaries of chromatin domains and nuclear organization. Cell 111:151–154

    Article  CAS  PubMed  Google Scholar 

  • Laibach F (1907) Zur Frage nach der Individualität der Chromosomen im Pflanzenreich. Beih Bot Cbl 22, Abt. I:191−210

    Google Scholar 

  • Leister D (2003) Chloroplast research in the genomic age. Trends Genet 19:47–56

    Article  CAS  PubMed  Google Scholar 

  • Li P, Schulze EN, Tong C et al. (2011) Rat embryonic stem cell derivation and propagation. In: Pease S, Saunders TL (Hrsg) Advanced Protocols for Animal Transgenesis. Springer, Berlin, 457–475

    Google Scholar 

  • Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367

    Article  CAS  PubMed  Google Scholar 

  • Lindegren CC, Lindegren G (1949) Unusual gene-controlled combinations of carbohydrate fermentations in yeast hybrids. Proc Natl Acad Sci USA 35:23–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundberg AS, Weinberg RA (1999) Control of the cell cycle and apoptosis. Eur J Cancer 35:1886–1894

    Article  CAS  PubMed  Google Scholar 

  • Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L). Nature 190:372–373

    Article  CAS  PubMed  Google Scholar 

  • Mao YS, Zhang B, Spector DL (2011) Biogenesis and function of nuclear bodies. Trends Genet 27:295–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marston AL, Amon A (2004) Meiosis: cell-cycle controls shuffle and deal. Nat Rev Mol Cell Biol 5:983–997

    Article  CAS  PubMed  Google Scholar 

  • Mazia D (1961) Mitosis and the physiology of cell division. In: Brachet J, Mirskey AE (Hrsg) The Cell, Bd. 3. Academic Press, New York

    Google Scholar 

  • Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604

    Google Scholar 

  • Moll R, Divo M, Langbein L (2008) The human keratins: biology and pathology. Histochem Cell Biol 129:705–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382:536–539

    Article  CAS  PubMed  Google Scholar 

  • Müller WA, Hassel M (2012) Entwicklungsbiologie und Reproduktionsbiologie des Menschen und bedeutender Modellorganismen, 5. Aufl. Springer Spektrum, Heidelberg

    Book  Google Scholar 

  • Munk K (2000) Grundstudium Biologie: Biochemie, Zellbiologie, Ökologie, Evolution. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Neretti N, Wang PY, Brodsky AS et al. (2009) Long-lived Indy induces reduced mitochondrial reactive oxygen species production and oxidative damage. Proc Natl Acad Sci USA 106:2277–2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norton WHJ, Bally-Cuif L (2012) Unravelling the proximate causes of the aggression-boldness behavioural syndrome in zebrafish. Behaviour 149:1063–1079

    Article  Google Scholar 

  • Nowrousian M (2007) Neurospora crassa als Modellorganismus im »postgenomischen « Zeitalter. BIOspektrum 13:709–712

    Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  PubMed  Google Scholar 

  • Ouyang L, Shi Z, Zhao S et al. (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45:487–98

    Article  CAS  PubMed  Google Scholar 

  • Paaby AB, Schmidt PS (2008) Functional significance of allelic variation at methuselah, an aging gene in Drosophila. PLoS One 3:e198–7

    Article  Google Scholar 

  • Page DR, Grossniklaus U (2002) The art and design of genetic screens: Arabidopsis thaliana. Nat Rev Genet 3:124–136

    Article  CAS  PubMed  Google Scholar 

  • Paigen K (2003a) One hundred years of mouse genetics: an intellectual history. I. The classical period (1902-1980). Genetics 163:1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paigen K (2003b) One hundred years of mouse genetics: an intellectual history. II. The molecular revolution (1981-2002). Genetics 163:1227–1235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peters LL, Robledo RF, Bult CJ et al. (2007) The mouse as a model for human biology: a resource guide for complex trait analysis. Nat Rev Genet 8: 58–69

    Article  CAS  PubMed  Google Scholar 

  • Raab JR, Chiu J, Zhu J et al. (2012) Human tRNA genes function as chromatin insulators. EMBO J 31:330–350

    Article  CAS  PubMed  Google Scholar 

  • Raju NB (2009) Neurospora as a model fungus for studies in cytogenetics and sexual biology at Stanford. J Biosci 34:139–159

    Article  PubMed  Google Scholar 

  • Raven JA, Allen JF (2003) Genomics and chloroplast evolution: what did cyanobacteria do for plants? Genome Biol 4:20–9

    Article  Google Scholar 

  • Rosenthal N, Ashburner M (2002) Taking stock of our models: the function and future of stock centres. Nat Rev Genet 3:711–717

    Article  CAS  PubMed  Google Scholar 

  • Santos RX, Correia SC, Cardoso S et al. (2011) Effects of rapamycin and TOR on aging and memory: implications for Alzheimer's disease. J Neurochem 117:927–936

    Article  CAS  PubMed  Google Scholar 

  • Schnittger A, Hülskamp M (2002) Trichome morphogenesis: a cell-cycle perspective. Phil Trans R Soc Lond B 357:823–826

    Article  CAS  Google Scholar 

  • Schwarz-Sommer Z, Davis B, Hudson A (2003) An everlasting pioneer: the story of Antirrhinum research. Nat Rev Genet 4:655–664

    Article  Google Scholar 

  • Sommerville C, Koornneef M (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3:883–889

    Article  Google Scholar 

  • Streisinger G, Walker C, Dower N et al. (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291:293–296

    Article  CAS  PubMed  Google Scholar 

  • Tesson L, Cozzi J, Ménoret S et al. (2005) Transgenic modifications of the rat genome. Transgenic Res 14:531–546

    Article  CAS  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigative biology. Science 282:2012–2018

    Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into the fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Toivonen JM, Gems D, Partridge L (2009) Longevity of Indy mutant Drosophila not attributable to Indy mutation. Proc Natl Acad Sci USA 106:E53

    Google Scholar 

  • Vanden Berghe T, Linkermann, Jouan-Lanhouet S et al. (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15:135–147

    Article  CAS  PubMed  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al. (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  • de Veylder L, Beeckman, Beemster GTS et al. (2002) Control of proliferation, endoreduplication and differentiation by the Arabidopsis E2Fa-Dpa transcription factor. EMBO J 21:1360–1368

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner TE, Hoppe PC, Jollick JD et al. (1981) Microinjection of a rabbit β-globin gene into zygotes and its subsequent expression in adult mice and their offspring. Proc Natl Acad Sci USA 78:6376–6380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace DC, Singh G, Lott MT et al. (1988) Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science 242:1427–1430

    Article  CAS  PubMed  Google Scholar 

  • Wang PY, Neretti N, Whitaker R et al. (2009) Long-lived Indy and calorie restriction interact to extend life span. Proc Natl Acad Sci USA 106:9262–9267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Corces VG (2012) Insulators, long-range interactions, and genome function. Curr Opin Genet Dev 22:86–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F, Fu A, Aluru M et al. (2007) Variegation mutants and mechanisms of chloroplast biogenesis. Plant Cell Environ 30:350–365

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Graw, J. (2015). Die eukaryotische Zelle und Modellorganismen. In: Genetik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44817-5_5

Download citation

Publish with us

Policies and ethics