Skip to main content

Entwicklungsgenetik

  • Chapter
Genetik
  • 28k Accesses

Zusammenfassung

Die Entwicklung zu einem vielzelligen Organismus ist der komplizierteste Vorgang, den eine Zelle erfahren kann. Darauf beruht auch die Faszination und Herausforderung der Entwicklungsbiologie im Allgemeinen. Eine Vielzahl genetischer Netzwerke steuert diese komplexen Prozesse. Mithilfe von Mutanten können wir entwicklungsbiologische Vorgänge bei Pflanzen und Tieren viel besser verstehen. In der Entwicklungsbiologie werden im Wesentlichen fünf Entwicklungsprozesse unterschieden, die sich natürlich in der Realität teilweise überlagern und wechselseitig beeinflussen. Die Kenntnis dieser Systematik erleichtert das Verständnis der komplexeren Prozesse, die wir später besprechen werden; wir finden sie sowohl im Pflanzen- als auch im Tierreich

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Abbas M, Alabadí D, Blázquez MA (2013) Differential growth at the apical hook: all roads lead to auxin. Front Plant Sci 4:44–1

    Article  Google Scholar 

  • Addis RC, Epstein JA (2013) Induced regeneration - the progress and promise of direct reprogramming for heart repair. Nat Med 19:829–836

    Article  CAS  PubMed  Google Scholar 

  • Amabile G, Meissner A (2009) Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med 15:59–68

    Article  CAS  PubMed  Google Scholar 

  • An F, Zhang X, Zhu Z et al. (2012) Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Res 22:915–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babbs C, Furniss D, Morriss-Kay GM et al. (2008) Polydactyly in the mouse mutant doublefoot involves altered Gli3 processing and is caused by a large deletion in cis to Indian hedgehog. Mech Dev 125:517–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bateson W (1894) Materials for the study of variation treated with especial regard to discontinuity in the origin of species. Macmillan, London

    Book  Google Scholar 

  • Beis D, Stainier DYR (2006) In vivo cell biology: following the zebrafish trend. Trends Cell Biol 16:105–112

    Article  CAS  PubMed  Google Scholar 

  • Charlton-Perkins M, Brown NL, Cook TA (2011) The lens in focus: a comparison of lens development in Drosophila and vertebrates. Mol Genet Genomics 286:189–213

    Article  CAS  PubMed  Google Scholar 

  • Chin-Sang ID, Chisholm AD (2000) Form of the worm: genetics of epidermal morphogenesis in C. elegans. Trends Genet 16:544–551

    Article  CAS  PubMed  Google Scholar 

  • Chopra VS, Mishra RK (2006) »Mir«acles in hox gene regulation. Bioessays 28:445–448

    Article  CAS  PubMed  Google Scholar 

  • Cooley L, Verheyen E, Ayers K (1992) chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 69:173–184

    Article  CAS  PubMed  Google Scholar 

  • Copp AJ, Greene NDE, Murdoch JN (2003) The genetic basis of mammalian neurulation. Nat Rev Genet 4:784–793

    Article  PubMed  Google Scholar 

  • Crick AP, Babbs C, Brown JM et al. (2003) Develomental mechanisms underlying polydactyly in the mouse mutant Doublefoot. J Anat 202:21–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Driesch H (1900) Studien über das Regulationsvermögen der Organismen. 4. Die Verschmelzung der Individualität bei Echinidenkeimen. Arch Entw Mech 10:411–434

    Google Scholar 

  • Ephrussi A, St Johnston D (2004) Seeing is believing: the bicoid morphogen gradient matures. Cell 116:143–152

    Article  CAS  PubMed  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  • Ewen KA, Koopman P (2010) Mouse germ cell development: from specification to sex determination. Mol Cell Endocrinol 323:76–93

    Article  CAS  PubMed  Google Scholar 

  • Favor J, Neuhäuser-Klaus A (2000) Saturation mutagenesis for dominant eye morphological defects in the mouse Mus musculus. Mamm Genome 11:520–525

    Article  CAS  PubMed  Google Scholar 

  • Fuchs J, Mueller JC, Lichtner P et al. (2009) The transcription factor PITX3 is associated with sporadic Parkinson's disease. Neurobiol Ageing 30: 731–738

    Article  CAS  Google Scholar 

  • Friml J (2010) Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur J Cell Biol 89:231–235

    Article  CAS  PubMed  Google Scholar 

  • Graw J (2003) The genetic and molecular basis of congenital eye defects. Nat Rev Genet 4:876–888

    Article  CAS  PubMed  Google Scholar 

  • Graw J, Neuhäuser-Klaus A, Klopp N et al. (2004) Genetic and allelic heterogeneity of Cryg mutations in eight distinct forms of dominant cataract in the mouse. Invest Ophthalmol Vis Sci 45:1202–1213

    Article  PubMed  Google Scholar 

  • Guo J, Wang H, Hu X (2013) Reprogramming and transdifferentiation shift the landscape of regenerative medicine. DNA Cell Biol 32:565–572

    Article  CAS  PubMed  Google Scholar 

  • Gurdon JB (1968) Transplanted nuclei and cell differentiation. Sci Amer 219:24–35

    Article  CAS  PubMed  Google Scholar 

  • Gurdon JB, Byrne JA, Simonsson S (2003) Nuclear reprogramming and stem cell creation. Proc Natl Acad Sci USA 100:11819–11822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267:1788–1792

    Article  CAS  PubMed  Google Scholar 

  • Hall JG (2003) Twinning. The Lancet 362:735–743

    Article  Google Scholar 

  • Ito T, Handa H (2012) Deciphering the mystery of thalidomide teratogenicity. Congenit Anom 52:1–7

    Article  CAS  Google Scholar 

  • Jenik PD, Barton MK (2005) Surge and destroy: the role of auxin in plant embryogenesis. Development 132:3577–3585

    Article  CAS  PubMed  Google Scholar 

  • Jiménez G, Guichet A, Ephrussi A et al. (2000) Relief of gene expression by Torso RTK signaling: role of capicua in Drosophila terminal and dorsoventral patterning. Genes Dev 14:224–231

    PubMed  PubMed Central  Google Scholar 

  • Johnston DS, Nüsslein-Volhard C (1992) The origin of patterns and polarity in the Drosophila embryo. Cell 68:201–219

    Article  Google Scholar 

  • Kazmerova Z, Zilka N, Cente M et al. (2013) Can we teach old dogs new tricks? Neuroprotective cell therapy in Alzheimer's and Parkinson's disease. J Alzheimers Dis 37:251–272

    PubMed  Google Scholar 

  • Kessel M, Gruss P (1991) Homeotic transformation of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67: 89–104

    Article  CAS  PubMed  Google Scholar 

  • King TJ, Briggs R (1956) Serial transplantation in amphibia. Cold Spring Harbor Symp Quant Biol 21:271–289

    Article  CAS  PubMed  Google Scholar 

  • Kipreos ET (2005) C. elegans cell cycles: invariance and stem cell divisions. Nat Rev Mol Cell Biol 6:766–776

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66

    Article  CAS  PubMed  Google Scholar 

  • Kornfeld K (1997) Vulval development in Caenorhabditis elegans. Trends Genet 13:55–61

    Article  CAS  PubMed  Google Scholar 

  • Kratochvilova J, Ehling UH (1979) Dominant cataract mutations induced by γ-irradiation of male mice. Mutat Res 63:221–223

    Article  CAS  PubMed  Google Scholar 

  • Krigs S, Shim JW, Piao J et al. (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 480:547–551

    Google Scholar 

  • Laux T, Würschum T, Breuninger H (2004) Genetic regulation of embryonic pattern formation. Plant Cell 16(Suppl):S190–S202

    PubMed Central  Google Scholar 

  • Lenz W (1970) Medizinische Genetik, 2. Aufl. dtv und Thieme, Stuttgart

    Google Scholar 

  • Lenz W (1992) A personal perspective on the thalidomide tragedy. Teratology 46:417–418

    Article  CAS  PubMed  Google Scholar 

  • Leptin M, Grunewald E (1990) Cell shape changes during gastrulation in Drosophila. Development 110:73–84

    CAS  PubMed  Google Scholar 

  • Luo Y, Guo Z, Li L (2013) Evolutionary conservation of microRNA regulatory programs in plant flower development. Dev Biol 380:133–144

    Article  CAS  PubMed  Google Scholar 

  • Lyczak R, Gomes JE, Bowerman B (2002) Heads or tails: cell polarity and axis formation in the early Caenorhabditis elegans embryo. Dev Cell 3: 157–166

    Article  CAS  PubMed  Google Scholar 

  • Maduro MF (2006) Endomesoderm specification in Caenorhabditis elegans and other nematodes. BioEssays 28:1010–1022

    Article  CAS  PubMed  Google Scholar 

  • Morante J, Desplan C, Celik A (2007) Generating patterned arrays of photoreceptors. Curr Opin Genet Develop 17:314–319

    Article  CAS  Google Scholar 

  • Moreira J, Deutsch A (2005) Pigment pattern formation in zebrafish during late larval stages: a model based on local interactions. Dev Dyn 232:33–42

    Article  PubMed  Google Scholar 

  • Müller WA, Hassel M (2012) Entwicklungsbiologie und Reproduktionsbiologie des Menschen und bedeutender Modellorganismen, 5. Aufl. Springer Spektrum, Heidelberg

    Book  Google Scholar 

  • Nakajima K, Benfey PN (2002) Signaling in and out: control of cell division and differentiation in the shoot and root. Plant Cell 14(Suppl): S265–S276

    PubMed Central  Google Scholar 

  • Neuhauss SCF (2003) Behavioral genetic approaches to visual system development and function in zebrafish. J Neurobiol 54:148–160

    Article  CAS  PubMed  Google Scholar 

  • Niessing D, Rivera-Pomar R, La Rosée A et al. (1997) A cascade of transcriptional control leading to axis determination in Drosophila. J Cell Physiol 173:162–167

    Article  CAS  PubMed  Google Scholar 

  • Nöthiger R (1972) The larval development of imaginal disks. In: Ursprung H, Nöthiger R (Hrsg) Results and Problems in Cell Differentiation, 5. Aufl. Springer, Berlin, S 1–34

    Google Scholar 

  • Opiz PM (1821) 2. Capsella apetala Opiz. Eine neue merkwürdige Pflanze. Flora oder Botanische Zeitung 4:436–443

    Google Scholar 

  • Paquette AJ, Benfey PN (2001) Axis formation and polarity in plants. Curr Opin Genet Dev 11:405–409

    Article  CAS  PubMed  Google Scholar 

  • Passier R, Mummery C (2003) Origin and use of embryonic and adult stem cells in differentiation and tissue repair. Cardiovasc Res 58:323–335

    Article  Google Scholar 

  • Perkins TJ, Jaeger J, Reinitz J et al. (2006) Reverse engineering the gap gene network of Drosophila melanogaster. PloS Comput Biol 2:e5–1

    Article  Google Scholar 

  • Pick L (1998) Segmentation: painting stripes from flies to vertebrates. Dev Genet 23:1–10

    Article  CAS  PubMed  Google Scholar 

  • Placzek MR, Chung IM, Macedo HM et al. (2009) Stem cell bioprocessing: fundamentals and principles. J R Soc Interface 6:209–232

    Article  CAS  PubMed  Google Scholar 

  • Pruitt RE, Bowman JL, Grossniklaus U (2003) Plant genetics: a decade of integration. Nat Genet 33(Suppl):294–304

    Article  CAS  PubMed  Google Scholar 

  • Pulido A, Laufs P (2010) Co-ordination of developmental processes by small RNAs during leaf development. J Exp Bot. 61:1277–1291

    Article  CAS  PubMed  Google Scholar 

  • Rédei GP (1962) Supervital mutants of Arabidopsis. Genetics 47:443–460

    PubMed  PubMed Central  Google Scholar 

  • Rivera-Pomar R, Jäckle H (1996) From gradient to stripes in Drosophila embryogenesis: filling the gaps. Trends Genet 12:478–483

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Marí A, Cañestro C, BreMiller RA et al. (2013) Retinoic acid metabolic genes, meiosis, and gonadal sex differentiation in zebrafish. PLoS One 8:e7395–1

    Article  Google Scholar 

  • Rose LS, Kemphues KJ (1998) Early patterning of the C. elegans embryo. Annu Rev Genet 32:521–545

    Article  CAS  PubMed  Google Scholar 

  • Rosemann M, Ivashkevich A, Favor J et al. (2010) Microphthalmia, parkinsonism, and enhanced nociception in Pitx3 (416insG ) mice. Mamm Genome 21:13–27

    Article  CAS  PubMed  Google Scholar 

  • Saedler H, Becker A, Winter KU et al. (2001) MADS-box genes are involved in floral development and evolution. Acta Biochim Polon 48:351–358

    CAS  PubMed  Google Scholar 

  • Sanson B (2001) Generating patterns from fields of cells. EMBO Rep 2: 1083–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz C, Tautz D (1994) Autonomous concentration-dependent activation and repression of Krüppel by hunchback in the Drosophila embryo. Development 120:3043–3049

    CAS  PubMed  Google Scholar 

  • Schwarz-Sommer Z, Huijser P, Nacken W et al. (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250:931–936

    Article  CAS  PubMed  Google Scholar 

  • Scofield S, Murray JAH (2006) KNOX gene function in plant stem cell niches. Plant Mol Biol 60:929–946

    Article  CAS  PubMed  Google Scholar 

  • Sharma RP, Chopra VL (1976) Effect of the wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. Dev Biol 48: 461–465

    Article  CAS  PubMed  Google Scholar 

  • Skromne I, Prince VE (2008) Current perspectives in zebrafish reverse genetics: moving forward. Dev Dyn 237:861–882

    Article  PubMed  Google Scholar 

  • Smidt MP, Smits SM, Bouwmeester H et al. (2004) Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development 131:1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Ma H, Frohlich MW et al. (2007) The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression. Trends Plant Sci 12:358–367

    Article  CAS  PubMed  Google Scholar 

  • Spemann H (1938) Embryonic Development and Induction. Yale University Press, New Haven

    Google Scholar 

  • Spiegel AM (2013) The stem cell wars: a dispatch from the front. Trans Am Clin Climatol Assoc 124:94–110

    PubMed  PubMed Central  Google Scholar 

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037

    Article  CAS  PubMed  Google Scholar 

  • Steinhauer J, Kalderon D (2006) Microtubule polarity and axis formation in the Drosophila oocyte. Dev Dyn 235:1455–1468

    Article  CAS  PubMed  Google Scholar 

  • Struhl G, Johnston P, Lawrence PA (1992) Control of Drosophila body pattern by the hunchback morphogen gradient. Cell 69:237–249

    Article  CAS  PubMed  Google Scholar 

  • Tabata T, Takei Y (2004) Morphogens, their identification and regulation. Development 131:703–712

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Tariverdian G, Buselmaier W (2004) Humangenetik, 3. Aufl. Springer, Berlin Tickle C (2002) Molecular basis of vertebrate limb patterning. Am J Med Genet 112:250–255

    Google Scholar 

  • Tsiantis M, Hay A (2003) Comparative plant development: the time of the leaf? Nat Rev Genet 4:169–180

    Article  CAS  PubMed  Google Scholar 

  • Vroemen C, de Vries S (1999) Flowering plant embryogenesis. In: Russo VEA, Cove DJ, Edgar LG et al. (Hrsg) Development. Springer, Berlin, S 121–132

    Google Scholar 

  • Wahl V, Ponnu J, Schlereth A et al. (2013) Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339:704–707

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Montell C (2007) Phototransduction and retinal degeneration in Drosophila. Pflugers Arch 454:821–847

    Article  CAS  PubMed  Google Scholar 

  • Wigge PA (2011) FT, a mobile developmental signal in plants. Curr Biol 21:R374–R378

    Article  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J et al. (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Graw, J. (2015). Entwicklungsgenetik. In: Genetik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44817-5_12

Download citation

Publish with us

Policies and ethics