Advertisement

The Complexity of Approximating a Trembling Hand Perfect Equilibrium of a Multi-player Game in Strategic Form

  • Kousha Etessami
  • Kristoffer Arnsfelt Hansen
  • Peter Bro Miltersen
  • Troels Bjerre Sørensen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8768)

Abstract

We consider the task of computing an approximation of a trembling hand perfect equilibrium for an n-player game in strategic form, n ≥ 3. We show that this task is complete for the complexity class FIXP a . In particular, the task is polynomial time equivalent to the task of computing an approximation of a Nash equilibrium in strategic form games with three (or more) players.

Keywords

Nash Equilibrium Mixed Strategy Pure Strategy Sorting Network Strategic Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, R.M.: “Almost” Implies “Near”. Transactions of the American Mathematical Society 296(1), 229–237 (1986)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Basu, S., Pollack, R., Roy, M.: Algorithms in Real Algebraic Geometry, 2nd edn. Springer (2008)Google Scholar
  3. 3.
    Basu, S., Pollack, R., Roy, M.: Algorithms in Real Algebraic Geometry, online edition (2011), http://perso.univ-rennes1.fr/marie-francoise.roy/bpr-ed2-posted2.html
  4. 4.
    Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In: Proceedings of 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 261–272 (2006)Google Scholar
  5. 5.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. In: Procedings of the 38th Annual ACM Symposium on the Theory of Computing (STOC 2006), pp. 71–78 (2006)Google Scholar
  6. 6.
    Etessami, K., Yannakakis, M.: On the complexity of Nash equilibria and other fixed points. SIAM J. Comput. 39(6), 2531–2597 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Gul, F., Pearce, D., Stacchetti, E.: A bound on the proportion of pure strategy equilibria in generic games. Math. of Oper. Res. 18, 548–552 (1993)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Hansen, K.A., Miltersen, P.B., Sørensen, T.B.: The computational complexity of trembling hand perfection and other equilibrium refinements. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 198–209. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. III. Addison-Wesley (1973)Google Scholar
  10. 10.
    Lemke, C.E.: Bimatrix equilibrium points and mathematical programming. Management Science 11, 681–689 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Miltersen, P.B., Sørensen, T.B.: Computing a quasi-perfect equilibrium of a two-player game. Economic Theory 42(1), 175–192 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Nash, J.: Non-cooperative games. Annals of Mathematics 54, 289–295 (1951)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Papadimitriou, C.H.: On graph-theoretic lemmata and complexity classes. In: Proceedings of the 31st Annual Symposium on Foundations of Computer Science, St. Louis, MS, pp. 794–801. IEEE Computer Society Press (October 1990)Google Scholar
  14. 14.
    Scarf, H.E.: The approximation of fixed points of a continuous mapping. SIAM Journal of Applied Mathematics 15, 1328–1343 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Selten, R.: A reexamination of the perfectness concept for equilibrium points in extensive games. International Journal of Game Theory 4, 25–55 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Sørensen, T.B.: Computing a proper equilibrium of a bimatrix game. In: ACM Conference on Electronic Commerce, EC 2012, pp. 916–928 (2012)Google Scholar
  17. 17.
    van Damme, E.: Stability and Perfection of Nash Equlibria, 2nd edn. Springer (1991)Google Scholar
  18. 18.
    von Stengel, B., van den Elzen, A., Talman, D.: Computing normal form perfect equilibria for extensive two-person games. Econometrica 70(2), 693–715 (2002)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kousha Etessami
    • 1
  • Kristoffer Arnsfelt Hansen
    • 2
  • Peter Bro Miltersen
    • 2
  • Troels Bjerre Sørensen
    • 3
  1. 1.University of EdinburghUK
  2. 2.Aarhus UniversityDenmark
  3. 3.IT-University of CopenhagenDenmark

Personalised recommendations