Clearing Markets via Bundles

  • Michal Feldman
  • Brendan Lucier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8768)


We study algorithms for combinatorial market design problems, where a set of heterogeneous and indivisible objects are priced and sold to potential buyers subject to equilibrium constraints. Extending the CWE notion introduced by Feldman et al. [STOC 2013], we introduce the concept of a Market-Clearing Combinatorial Walrasian Equilibium (MC-CWE) as a natural relaxation of the classical Walrasian equilibrium (WE) solution concept. The only difference between a MC-CWE and a WE is the ability for the seller to bundle the items prior to sale. This innocuous and natural bundling operation imposes a plethora of algorithmic and economic challenges and opportunities. Unlike WE, which is guaranteed to exist only for (gross) substitutes valuations, a MC-CWE always exists. The main algorithmic challenge, therefore, is to design computationally efficient mechanisms that generate MC-CWE outcomes that approximately maximize social welfare. For a variety of valuation classes encompassing substitutes and complements (including super-additive, single-minded and budget-additive valuations), we design polynomial-time MC-CWE mechanisms that provide tight welfare approximation results.


Social Welfare Clear Market Price Vector Full Version Combinatorial Auction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andelman, N., Mansour, Y.: Auctions with budget constraints. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 26–38. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Azar, Y., Birnbaum, B., Karlin, A.R., Mathieu, C., Nguyen, C.T.: Improved approximation algorithms for budgeted allocations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 186–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bikhchandani, S., Mamer, J.W.: Competitive equilibrium in an exchange economy with indivisibilities. Journal of Economic Theory 74(2), 385–413 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bikhchandani, S., Ostroy, J.M.: The package assignment model. Journal of Economic Theory 107(2), 377–406 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and gap. In: FOCS 2008 (2008)Google Scholar
  7. 7.
    Feige, U., Vondrak, J.: Approximation algorithms for allocation problems: Improving the factor of 1 - 1/e. In: 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006, pp. 667–676 (October 2006)Google Scholar
  8. 8.
    Feldman, M., Gravin, N., Lucier, B.: Combinatorial walrasian equilibrium. In: STOC, pp. 61–70 (2013)Google Scholar
  9. 9.
    Fiat, A., Wingarten, A.: Envy, multi envy, and revenue maximization. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 498–504. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Fu, H., Kleinberg, R., Lavi, R.: Conditional equilibrium outcomes via ascending price processes with applications to combinatorial auctions with item bidding. In: ACM Conference on Electronic Commerce, p. 586 (2012)Google Scholar
  11. 11.
    Gul, F., Stacchetti, E.: Walrasian equilibrium with gross substitutes. J. of Economic Theory 87(1), 95–124 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry, F.: On profit-maximizing envy-free pricing. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005 (2005)Google Scholar
  13. 13.
    Holzman, R., Kfir-Dahav, N., Monderer, D., Tennenholtz, M.: Bundling equilibrium in combinatorial auctions. Games and Economic Behavior 47(1), 104–123 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Kelso Jr., A.S., Crawford, V.P.: Job matching, coalition formation, and gross substitutes. Econometrica 50(6), 1483–1504 (1982)CrossRefzbMATHGoogle Scholar
  15. 15.
    Mirrokni, V., Schapira, M., Vondrak, J.: Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions. In: Proceedings of the 9th ACM Conference on Electronic Commerce, EC 2008, pp. 70–77. ACM, New York (2008)Google Scholar
  16. 16.
    Nisan, N., Segal, I.: The communication requirements of efficient allocations and supporting prices. Journal of Economic Theory 129(1), 192–224 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Shapley, L.S., Shubik, M.: The assignment game i: The core. International Journal of Game Theory 1, 111–130 (1971), doi:10.1007/BF01753437CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Srinivasan, A.: Budgeted allocations in the full-information setting. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 247–253. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Michal Feldman
    • 1
  • Brendan Lucier
    • 2
  1. 1.Tel Aviv University and Microsoft ResearchTel AvivIsrael
  2. 2.Microsoft ResearchCambridgeUSA

Personalised recommendations