Skip to main content

Molar Incisor Hypomineralization: Structure, Composition, and Properties

  • Chapter
  • First Online:
Planning and Care for Children and Adolescents with Dental Enamel Defects

Abstract

The first permanent molars in molar incisor hypomineralization (MIH) are characterized by localized demarcated lesions or opacities within the enamel. These lesions are often rough and plaque retentive and at risk of rapid caries and post-eruptive breakdown (PEB). There is increasing evidence to suggest that the physical, chemical and mechanical properties of MIH-affected enamel are different to those of otherwise healthy enamel. Studies suggest that the hardness and modulus of elasticity of MIH-affected enamel are reduced by between 50 and 75 % and are accompanied by a simultaneous 20 % reduction in mineral content. Furthermore, the protein content of affected enamel is up to 15 times higher than in sound enamel particularly in the darker brown opacities. These findings may explain why hypomineralized enamel fractures easily under occlusal function causing PEB. Scanning and transmission electron microscopic studies have shown that the microstructure of this enamel is more disorganized and, when etched with phosphoric acid, it does not show the typical etching pattern. This may contribute clinically to the compromised bonding of adhesive dental materials to affected teeth. Knowledge of the physical and mechanical properties and composition of developmentally defective enamel helps clinicians understand the challenges associated with treating affected individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He LH, Swain MV. Enamel – a “metallic-like” deformable biocomposite. J Dent. 2007;35(5):431–7.

    Article  PubMed  Google Scholar 

  2. Crombie FA, Manton DJ, Palamara JE, Zalizniak I, Cochrane NJ, Reynolds EC. Characterisation of developmentally hypomineralised human enamel. J Dent. 2013;41(7):611–8.

    Article  PubMed  Google Scholar 

  3. Mahoney E, Ismail FS, Kilpatrick N, Swain M. Mechanical properties across hypomineralized/hypoplastic enamel of first permanent molar teeth. Eur J Oral Sci. 2004;112(6):497–502.

    Article  PubMed  Google Scholar 

  4. Kinney JH, Marshall SJ, Marshall GW. The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. Crit Rev Oral Biol Med. 2003;14(1):13–29.

    Article  PubMed  Google Scholar 

  5. Cuy JL, Mann AB, Livi KJ, Teaford MF, Weihs TP. Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch Oral Biol. 2002;47:281–91.

    Article  PubMed  Google Scholar 

  6. Meredith N, Sherriff M, Setchell DJ, Swanson SAV. Measurement of the mircohardness and Young’s modulus of human enamel and dentine using an indentation technique. Arch Oral Biol. 1996;41:539–45.

    Article  PubMed  Google Scholar 

  7. Xu HHK, Smith DT, Jahanmir S, Romberg E, Kelly JR, Thompson VP, et al. Indentation damage and mechanical properties of human enamel and dentin. J Dent Res. 1998;77(3):472–80.

    Article  PubMed  Google Scholar 

  8. Crombie F, Cochrane NJ, Manton DJ, Palamara JE, Reynolds EC. Mineralisation of developmentally hypomineralised human enamel in vitro. Caries Res. 2013;47:259–63.

    Article  PubMed  Google Scholar 

  9. Mahoney EK, Rohanizadeh R, Ismail FS, Kilpatrick NM, Swain MV. Mechanical properties and microstructure of hypomineralised enamel of permanent teeth. Biomaterials. 2004;25(20):5091–100.

    Article  PubMed  Google Scholar 

  10. Jalevik B, Dietz W, Noren JG. Scanning electron micrograph analysis of hypomineralized enamel in permanent first molars. Int J Paediatr Dent. 2005;15(4):233–40.

    Article  PubMed  Google Scholar 

  11. Suckling GW, Nelson DG, Patel MJ. Macroscopic and scanning electron microscopic appearance and hardness values of developmental defects in human permanent tooth enamel. Adv Dent Res. 1989;3(2):219–33.

    PubMed  Google Scholar 

  12. Xie Z, Kilpatrick NM, Swain MV, Munroe PR, Hoffman M. Transmission electron microscope characterisation of molar-incisor-hypomineralisation. J Mater Sci Mater Med. 2008;19(10):3187–92.

    Article  PubMed  Google Scholar 

  13. William V, Burrow MF, Palamara JEA, Messer LB. Microshear bond strength of resin composite to teeth affected by molar hypomineralization using 2 adhesive systems. Pediatr Dent. 2006;28(3):233–41.

    PubMed  Google Scholar 

  14. Mahoney EK. Micromechanical and structural analysis of compromised dental tissues. PhD thesis, University of Sydney; 2005.

    Google Scholar 

  15. Farah RA, Swain MV, Drummond BK, Cook R, Atieh M. Mineral density of hypomineralised enamel. J Dent. 2010;38(1):50–8.

    Article  PubMed  Google Scholar 

  16. Fearne J, Anderson P, Davis GR. 3D X-ray microscopic study of the extent of variations in enamel density in first permanent molars with idiopathic enamel hypomineralisation. Br Dent J. 2004;196(10):634–8. Discussion 25.

    Article  PubMed  Google Scholar 

  17. Jalevik B, Noren JG. Enamel hypomineralization of permanent first molars: a morphological study and survey of possible aetiological factors. Int J Paediatr Dent. 2000;10(4):278–89.

    Article  PubMed  Google Scholar 

  18. Rodd HD, Boissonade FM, Day PF. Pulpal status of hypomineralized permanent molars. Pediatr Dent. 2007;29(6):514–20.

    PubMed  Google Scholar 

  19. Kilpatrick NM. New developments in understanding development defects of enamel: optimizing clinical outcomes. J Orthod. 2009;36:277–82.

    Article  PubMed  Google Scholar 

  20. Jalevik B, Klingberg GA. Dental treatment, dental fear and behaviour management problems in children with severe enamel hypomineralization of their permanent first molars. Int J Paediatr Dent. 2002;12(1):24–32.

    PubMed  Google Scholar 

  21. Farah RA, Drummond BK, Swain M, Williams S. Linking the clinical presentation of molar-incisor hypomineralisation to its mineral density. Int J Paediatr Dent. 2010;5:353–60.

    Article  Google Scholar 

  22. Da Costa-Silva CM, Ambrosano GMB, Jeremias F, De Souza JF, Mialhe FL. Increase in severity of molar–incisor hypomineralization and its relationship with the colour of enamel opacity: a prospective cohort study. Int J Paediatr Dent. 2011;21(5):333–41.

    Article  PubMed  Google Scholar 

  23. Jalevik B, Odelius H, Dietz W, Noren J. Secondary ion mass spectrometry and X-ray microanalysis of hypomineralized enamel in human permanent first molars. Arch Oral Biol. 2001;46(3):239–47.

    Article  PubMed  Google Scholar 

  24. Farah RA, Monk BC, Swain M, Drummond BK. Protein content of molar-incisor hypomineralisation enamel. J Dent. 2010;38(7):591–6.

    Article  PubMed  Google Scholar 

  25. Parry David A, Brookes Steven J, Logan Clare V, Poulter James A, El-Sayed W, Al-Bahlani S, et al. Mutations in C4orf26, encoding a peptide with in vitro hydroxyapatite crystal nucleation and growth activity, cause amelogenesis imperfecta. Am J Hum Genet. 2012;91(3):565–71.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Wright JT, Hall KI, Yamauchi M. The enamel proteins in human amelogenesis imperfecta. Arch Oral Biol. 1997;42(2):149–59.

    Article  PubMed  Google Scholar 

  27. Mangum JE, Crombie F, Kilpatrick NM, Manton DJ, Hubbard MJ. Surface integrity governs the proteome of hypomineralised enamel. J Dent Res. 2010;69:1160–5.

    Article  Google Scholar 

  28. Robinson C, Brookes SJ, Kirkham J, Shore RC, Bonass WA. Uptake and metabolism of albumin by rodent incisor enamel in vivo and postmortem: implications for control of mineralization by albumin. Calcif Tissue Int. 1994;55(6):467–72.

    Article  PubMed  Google Scholar 

  29. Robinson C, Kirkham J, Brookes SJ, Shore RC. The role of albumin in developing rodent dental enamel: a possible explanation for white spot hypoplasia. J Dent Res. 1992;71(6):1270–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin K. Mahoney BDS, MDSc PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mahoney, E.K., Farah, R. (2015). Molar Incisor Hypomineralization: Structure, Composition, and Properties. In: Drummond, B., Kilpatrick, N. (eds) Planning and Care for Children and Adolescents with Dental Enamel Defects. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44800-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44800-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44799-4

  • Online ISBN: 978-3-662-44800-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics