Advertisement

Syndromes and Diseases Associated with Developmental Defects of Enamel

  • Mike HarrisonEmail author
  • Angus Cameron
  • Nicky Kilpatrick
Chapter

Abstract

Some patients have what may be described as “syndromic teeth.” The size, number or crown/root morphology can indicate that the patient is affected by a recognized malformation syndrome. Developmental defects of enamel (DDE) can sometimes be part of a constellation of developmental changes elsewhere in the body and may even provide diagnostic clues. If the underlying condition includes processes that may affect enamel formation in more generalized, non-genetic ways, it can be difficult to be precise about the mechanism of the defect. Examples include renal disease and congenital cardiac defects, both of which can be of genetic origin and disturb enamel formation by genetic and/or pathological means. This section will describe some diseases and syndromes reported to exhibit DDE, with some guidance about whether they are likely to have direct or indirect association.

Keywords

Enamel defects Dental anomalies Phenotype Etiology Syndromes Medical history 

References

  1. 1.
    Jacobsen PE, Haubek D, et al. Developmental enamel defects in children born preterm: a systematic review. Eur J Oral Sci. 2014;122(1):7–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Arrow P. Risk factors in the occurrence of enamel defects of the first permanent molars among schoolchildren in Western Australia. Community Dent Oral Epidemiol. 2009;37(5):405–15.PubMedCrossRefGoogle Scholar
  3. 3.
    Brogardh-Roth S, Matsson L, Klingberg G. Molar-incisor hypomineralization and oral hygiene in 10- to-12-yr-old Swedish children born preterm. Eur J Oral Sci. 2011;119:33–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Seow W. A study of the development of the permanent dentition in very low birthweight children. Pediatr Dent. 1996;18:379–84.PubMedGoogle Scholar
  5. 5.
    Oliver W, Owings C, Brown W, Shapiro B. Hypoplastic enamel associated with the nephrotic syndrome. Pediatrics. 1963;32:399–406.PubMedGoogle Scholar
  6. 6.
    Kagnoff M. Celiac disease: pathogenesis of a model immunogenetic disease. J Clin Invest. 2007;117(1):41–9.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Majorana A, Bardellini E, Ravelli A, Plebani A, Polimeni A, Campus G. Implications of gluten exposure period, CD clinical forms, and HLA typing in the association between celiac disease and dental enamel defects in children. A case-control study. Int J Paediatr Dent. 2010;20(2):119–24.PubMedCrossRefGoogle Scholar
  8. 8.
    Aguirre J, Rodríguez R, Oribe D, Vitoria J. Dental enamel defects in celiac patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;84:646–50.PubMedCrossRefGoogle Scholar
  9. 9.
    Aine L. Coeliac-type permanent-tooth enamel defects. Ann Med. 1996;28(1):9–12.PubMedCrossRefGoogle Scholar
  10. 10.
    Priovolou C, Vanderas A, Papagiannoulis L. A comparative study of enamel defects in children and adolescents with and without coeliac disease. Eur J Paediatr Dent. 2004;5(2):102–6.PubMedGoogle Scholar
  11. 11.
    Wierink C, Van Dierman D, Aartman I, Heymans H. Dental enamel defects in children with coeliac disease. Int J Paediatr Dent. 2007;17:163–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Maki M, Aine L, Lipsanen V, Koskimies S. Dental enamel defects in first-degree relatives of coeliac disease patients. Lancet. 1991;337:763–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Minicucci E, Lopes L, Crocci A. Dental abnormalities in children after chemotherapy treatment for acute lymphoid leukemia. Leuk Res. 2003;27(1):45–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Foster B, Nociti FH, Somerman MJ. The rachitic tooth. Endocr Rev. 2013;35:1–34. doi: 10.1210/er.2013-1009.PubMedCrossRefGoogle Scholar
  15. 15.
    Zambrano M, Nikitakis N, Sanchez-Quevedo M, Sauk J, Sedano H, Rivera H. Oral and dental manifestations of vitamin D-dependent rickets type I: report of a pediatric case. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95(6):705–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Hanna J, Niimi K, Chan J. X- linked hypophosphatemia: genetic and clinical correlates. Am J Dis Child. 1991;145(8):865–70.PubMedCrossRefGoogle Scholar
  17. 17.
    Murayama T, Iwatsubo R, Akiyama S, Amano A, Morisaki I. Familial hypophosphatemic vitamin D-resistant rickets: dental findings and histologic study of teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;90(3):310–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Bender I, Naidorf I. Dental observations in vitamin D resistant rickets with special reference to periapical lesions. J Endod. 1985;11(11):514–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Alexander S, Moloney L, et al. Endodontic management of a patient with X-linked hypophosphataemic rickets. Aust Endod J. 2001;27(2):57–61.PubMedCrossRefGoogle Scholar
  20. 20.
    Chaussain-Miller C, Sinding C, Septier D, Wolikow M, Goldberg M, Garabedian M. Dentin structure in familial hypophosphatemic rickets: benefits of vitamin D and phosphate treatment. Oral Dis. 2007;13(5):482–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Azevedo TDPL, Feijo GCS, Bezerra ACB. Presence of developmental defects of enamel in cystic fibrosis patients. J Dent Child. 2006;73(3):159–63.Google Scholar
  22. 22.
    Narang A, Maguire A, Nunn JH, Bush A. Oral health and related factors in cystic fibrosis and other chronic respiratory disorders. Arch Dis Child. 2003;88(8):702–7.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Sui W, Boyd C, Wright J. Altered pH regulation during enamel development in the cystic fibrosis mouse incisor. J Dent Res. 2003;82(5):388–92.PubMedCrossRefGoogle Scholar
  24. 24.
    Flanagan N, O’Connor W, McCartan B, Miller S, McMenamin J, Watson R. Developmental enamel defects in tuberous sclerosis: a clinical genetic marker? J Med Genet. 1997;34(8):637–9.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    OMIM. Online Mendelian Inheritance in Man. Center for Medical Genetics, Johns Hopkins University and National Center for Biotechnology Information. Baltimore: National Library of Medicine; 2013.Google Scholar
  26. 26.
    Balmer R, Fayle SAF. Enamel defects and ectopic eruption in a child with Usher syndrome and a cochlear implant. Int J Paediatr Dent. 2007;17(1):57–61.PubMedCrossRefGoogle Scholar
  27. 27.
    Nordgarden H, Lima K, Skogedal N, Følling I, Storhaug K, Abrahamsen T. Dental developmental disturbances in 50 individuals with the 22q11.2 deletion syndrome; relation to medical conditions? Acta Odontol Scand. 2012;70(3):194–201.PubMedCrossRefGoogle Scholar
  28. 28.
    Nieminen P, Lukinmaa P, Alapulli H, Methuen M, Suojärvi T, Kivirikko S, et al. DLX3 homeodomain mutations cause tricho-dento-osseous syndrome with novel phenotypes. Cells Tissues Organs. 2011;194(1):49–59.PubMedCrossRefGoogle Scholar
  29. 29.
    Goodwin A, et al. Abnormal Ras signaling in Costello syndrome (CS) negatively regulates enamel formation. Hum Mol Genet. 2014;23(3):682–92.Google Scholar
  30. 30.
    Hunter L, Addy L, Knox J, Drage N. Is amelogenesis imperfecta an indication for renal examination? Int J Paediatr Dent. 2007;17(1):62–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Kantaputra P, Kaewgahya M, Khemaleelakul U, Dejkhamron P, Sutthimethakorn S, Thongboonkerd V, et al. Enamel-renal-gingival syndrome and FAM20A mutations. Am J Med Genet A. 2013;164A(1):1–9. Epub Nov 20.PubMedGoogle Scholar
  32. 32.
    Wright J. Oral manifestations in the epidermolysis bullosa spectrum. Dermatol Clin. 2010;28(1):159–64.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Luder H, Gerth-Kahlert C, Ostertag-Benzinger S, Schorderet D. Dental phenotype in Jalili syndrome due to a c.1312 dupC homozygous mutation in the CNNM4 gene. PLoS One. 2013;8(10):e78529.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mike Harrison
    • 1
    Email author
  • Angus Cameron
    • 2
  • Nicky Kilpatrick
    • 3
  1. 1.Department of Pediatric DentistryGuy’s and St Thomas’ Dental InstituteLondonUK
  2. 2.Department of Pediatric DentistryWestmead Hospital and The University of SydneyWestmeadAustralia
  3. 3.Cleft and Craniofacial ResearchMurdoch Childrens Research InstituteParkville, MelbourneAustralia

Personalised recommendations