Molar Incisor Hypomineralization and Hypomineralized Second Primary Molars: Diagnosis, Prevalence, and Etiology

  • Karin L. WeerheijmEmail author
  • Marlies E. C. Elfrink
  • Nicky Kilpatrick


Molar incisor hypomineralization (MIH) is a term used to describe a specific clinical entity in which there are demarcated opacities in erupting first permanent molars, frequently in combination with similar opacities in permanent incisors. Recently, comparable lesions have been reported in second primary molars and are referred to as hypomineralized second primary molars (HSPM). This chapter describes the diagnosis, etiology, and prevalence of MIH and HSPM and discusses the clinical characteristics and implications of this subgroup of DDE. Given the specific distribution of the developmental defects associated with MIH (and HSPM), the timing of any causative environmental disruption can be hypothesized to be between the 18th week of pregnancy and around 3–5 years of age. However, the evidence surrounding specific factors remains weak, not least because of a lack of consensus regarding assessment protocols and limited understanding as to the exact pathogenesis. Etiology seems to be multifactorial, and the etiological factors can be found in the pre-, peri-, and postnatal period. The literature suggests the worldwide prevalence of MIH varies between 2.8 % and 44 %, whereas for HSPM, figures of between 4.9 and 9.0 % have been reported. The presence of HSPM and demarcated opacities in erupting permanent incisors represents risk indicators for subsequent MIH. As MIH is associated with hypersensitive teeth, posteruptive loss of enamel and rapid caries progression early diagnosis is clinically very important.


Molar incisor hypomineralization Hypomineralized second primary molars Prevalence Demarcated opacities Posteruptive enamel loss Clinical risk factor Sensitivity 


  1. 1.
    Koch G, Hallonsten AL, Ludvigsson N, Hansson BO, Holst A, Ullbro C. Epidemiologic study of idiopathic enamel hypomineralization in permanent teeth of Swedish children. Community Dent Oral Epidemiol. 1987;15(5):279–85.PubMedCrossRefGoogle Scholar
  2. 2.
    Weerheijm KL. Molar incisor hypomineralisation (MIH). Eur J Paediatr Dent. 2003;4(3):114–20.PubMedGoogle Scholar
  3. 3.
    Weerheijm KL, Jalevik B, Alaluusua S. Molar-incisor hypomineralisation. Caries Res. 2001;35(5):390–1.PubMedCrossRefGoogle Scholar
  4. 4.
    Weerheijm KL, Duggal M, Mejare I, Papagiannoulis L, Koch G, Martens LC, et al. Judgement criteria for molar incisor hypomineralisation (MIH) in epidemiologic studies: a summary of the European meeting on MIH held in Athens. Eur J Paediatr Dent. 2003;4(3):110–3.PubMedGoogle Scholar
  5. 5.
    Elfrink M. Deciduous molar hypomineralisation, its nature and nurture. Thesis. Amsterdam: University of Amsterdam (UvA); 2012. p. 1–160.Google Scholar
  6. 6.
    Jalevik B. Prevalence and diagnosis of molar-incisor- hypomineralisation (MIH): a systematic review. Eur Arch Paediatr Dent. 2010;11(2):59–64.PubMedCrossRefGoogle Scholar
  7. 7.
    Elfrink ME, Schuller AA, Weerheijm KL, Veerkamp JS. Hypomineralized second primary molars: prevalence data in Dutch 5-year-olds. Caries Res. 2008;42(4):282–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Elfrink ME, Schuller AA, Veerkamp JS, Poorterman JH, Moll HA, ten Cate BJ. Factors increasing the caries risk of second primary molars in 5-year-old Dutch children. Int J Paediatr Dent. 2010;20(2):151–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Oliver K, Messer LB, Manton DJ, Kan K, Ng F, Olsen C, et al. Distribution and severity of molar hypomineralisation: trial of a new severity index. Int J Paediatr Dent. 2014;24(2):131–51. doi: 10.1111/ipd.12040. Epub 2013 May 22.PubMedCrossRefGoogle Scholar
  10. 10.
    Malmgren B, Andreasen J, Flores M, Robertson A, DiAngelis A, Andersson L, et al. International association of dental traumatology guidelines for the management of traumatic dental injuries: 3 injuries in the primary dentition. Dent Traumatol. 2012;28(3):174–82.PubMedCrossRefGoogle Scholar
  11. 11.
    Jalevik B, Klingberg G. Treatment outcomes and dental anxiety in 18-year-olds with MIH, comparisons with healthy controls – a longitudinal study. Int J Paediatr Dent. 2012;22(2):85–91.PubMedCrossRefGoogle Scholar
  12. 12.
    Suga S. Enamel hypomineralization viewed from the pattern of progressive mineralization of human and monkey developing enamel. Adv Dent Res. 1989;3(2):188–98.PubMedGoogle Scholar
  13. 13.
    Suckling GW. Developmental defects of enamel–historical and present-day perspectives of their pathogenesis. Adv Dent Res. 1989;3(2):87–94.PubMedGoogle Scholar
  14. 14.
    Fagrell TG, Ludvigsson J, Ullbro C, Lundin SA, Koch G. Aetiology of severe demarcated enamel opacities–an evaluation based on prospective medical and social data from 17,000 children. Swed Dent J. 2011;35(2):57–67.PubMedGoogle Scholar
  15. 15.
    Fagrell TG, Salmon P, Melin L, Noren JG. Onset of molar incisor hypomineralization (MIH). Swed Dent J. 2013;37(2):61–70.PubMedGoogle Scholar
  16. 16.
    Lygidakis NA, Dimou G, Briseniou E. Molar-incisor-hypomineralisation (MIH). Retrospective clinical study in Greek children. I. Prevalence and defect characteristics. Eur Arch Paediatr Dent. 2008;9(4):200–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Whatling R, Fearne JM. Molar incisor hypomineralization: a study of aetiological factors in a group of UK children. Int J Paediatr Dent. 2008;18(3):155–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Alaluusua S. Aetiology of molar-incisor-hypomineralisation: a systematic review. Eur Arch Paediatr Dent. 2010;11(2):53–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Jontell M, Linde A. Nutritional aspects on tooth formation. World Rev Nutr Diet. 1986;48:114–36.PubMedGoogle Scholar
  20. 20.
    van Amerongen WE, Kreulen CM. Cheese molars: a pilot study of the etiology of hypocalcifications in first permanent molars. J Dent Child. 1995;62(4):266–9.Google Scholar
  21. 21.
    Beentjes VE, Weerheijm KL, Groen HJ. Factors involved in the aetiology of molar-incisor hypomineralisation (MIH). Eur J Paediatr Dent. 2002;3(1):9–13.PubMedGoogle Scholar
  22. 22.
    Fearne JM, Bryan EM, Elliman AM, Brook AH, Williams DM. Enamel defects in the primary dentition of children born weighing less than 2000 g. Br Dent J. 1990;168(11):433–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Seow WK. A study of the development of the permanent dentition in very low birthweight children. Pediatr Dent. 1996;18(5):379–84.PubMedGoogle Scholar
  24. 24.
    Aine L, Backstrom MC, Maki R, Kuusela AL, Koivisto AM, Ikonen RS, et al. Enamel defects in primary and permanent teeth of children born prematurely. J Oral Pathol Med. 2000;29(8):403–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Crombie F, Manton D, Kilpatrick N. Aetiology of molar-incisor hypomineralization: a critical review. Int J Paediatr Dent. 2009;19(2):73–83.PubMedCrossRefGoogle Scholar
  26. 26.
    Jalevik B, Klingberg G, Barregard L, Noren JG. The prevalence of demarcated opacities in permanent first molars in a group of Swedish children. Acta Odontol Scand. 2001;59(5):255–60.PubMedCrossRefGoogle Scholar
  27. 27.
    Alaluusua S, Lukinmaa PL, Koskimies M, Pirinen S, Holtta P, Kallio M, et al. Developmental dental defects associated with long breast feeding. Eur J Oral Sci. 1996;104(5–6):493–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Alaluusua S, Calderara P, Gerthoux PM, Lukinmaa PL, Kovero O, Needham L, et al. Developmental dental aberrations after the dioxin accident in Seveso. Environ Health Perspect. 2004;112(13):1313–8.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Alaluusua S, Lukinmaa PL, Torppa J, Tuomisto J, Vartiainen T. Developing teeth as biomarker of dioxin exposure. Lancet. 1999;353(9148):206.PubMedCrossRefGoogle Scholar
  30. 30.
    Alaluusua S, Lukinmaa PL, Vartiainen T, Partanen AM, Torppa J, Tuomisto J. Polychlorinated dibenzo-p-dioxins and dibenzofurans via mother’s milk may cause developmental defects in the child’s teeth. Environ Toxicol Pharmacol. 1996;1:193–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Holtta P, Kiviranta H, Leppaniemi A, Vartiainen T, Lukinmaa PL, Alaluusua S. Developmental dental defects in children who reside by a river polluted by dioxins and furans. Arch Environ Health. 2001;56(6):522–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Jedeon K, De la Dure-Molla M, Brookes SJ, Loiodice S, Marciano C, Kirkham J, et al. Enamel defects reflect perinatal exposure to bisphenol A. Am J Pathol. 2013;183(1):108–18.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Kuscu OO, Caglar E, Aslan S, Durmusoglu E, Karademir A, Sandalli N. The prevalence of molar incisor hypomineralization (MIH) in a group of children in a highly polluted urban region and a windfarm-green energy island. Int J Paediatr Dent. 2009;19(3):176–85.PubMedCrossRefGoogle Scholar
  34. 34.
    Laisi S, Kiviranta H, Lukinmaa PL, Vartiainen T, Alaluusua S. Molar-incisor-hypomineralisation and dioxins: new findings. Eur Arch Paediatr Dent. 2008;9(4):224–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Salmela E, Lukinmaa PL, Partanen AM, Sahlberg C, Alaluusua S. Combined effect of fluoride and 2,3,7,8-tetrachlorodibenzo-p-dioxin on mouse dental hard tissue formation in vitro. Arch Toxicol. 2011;85(8):953–63.PubMedCrossRefGoogle Scholar
  36. 36.
    Jalevik B, Noren JG. Enamel hypomineralization of permanent first molars: a morphological study and survey of possible aetiological factors. Int J Paediatr Dent. 2000;10(4):278–89.PubMedCrossRefGoogle Scholar
  37. 37.
    van Amerongen WE, Kreulen CM. Cheese molars: a pilot study of the etiology of hypocalcifications in first permanent molars. ASDC J Dent Child. 1995;62(4):266–9.PubMedGoogle Scholar
  38. 38.
    Tung K, Fujita H, Yamashita Y, Takagi Y. Effect of turpentine-induced fever during the enamel formation of rat incisor. Arch Oral Biol. 2006;51(6):464–70.PubMedCrossRefGoogle Scholar
  39. 39.
    Laisi S, Ess A, Sahlberg C, Arvio P, Lukinmaa PL, Alaluusua S. Amoxicillin may cause molar incisor hypomineralization. J Dent Res. 2009;88(2):132–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Sahlberg C, Pavlic A, Ess A, Lukinmaa PL, Salmela E, Alaluusua S. Combined effect of amoxicillin and sodium fluoride on the structure of developing mouse enamel in vitro. Arch Oral Biol. 2013;58(9):1155–64.PubMedCrossRefGoogle Scholar
  41. 41.
    Kumazawa K, Sawada T, Yanagisawa T, Shintani S. Effect of single-dose amoxicillin on rat incisor odontogenesis: a morphological study. Clin Oral Investig. 2012;16(3):835–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Wogelius P, Haubek D, Poulsen S. Prevalence and distribution of demarcated opacities in permanent 1st molars and incisors in 6 to 8-year-old Danish children. Acta Odontol Scand. 2008;66(1):58–64.PubMedCrossRefGoogle Scholar
  43. 43.
    Sahlstrand P, Lith A, Hakeberg M, Noren JG. Timing of mineralization of homologues permanent teeth–an evaluation of the dental maturation in panoramic radiographs. Swed Dent J. 2013;37(3):111–9.PubMedGoogle Scholar
  44. 44.
    Brook AH, Smith JM. The aetiology of developmental defects of enamel: a prevalence and family study in East London, U.K. Connect Tissue Res. 1998;39(1–3):151–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Jeremias F, Koruyucu M, Kuchler EC, Bayram M, Tuna EB, Deeley K, et al. Genes expressed in dental enamel development are associated with molar-incisor hypomineralization. Arch Oral Biol. 2013;58(10):1434–42.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Ghanim AM, Morgan MV, Marino RJ, Bailey DL, Manton DJ. Risk factors of hypomineralised second primary molars in a group of Iraqi schoolchildren. Eur Arch Paediatr Dent. 2012;13(3):111–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Elfrink ME et al. Pre- and postnatal determinants of deciduous molar hypomineralisation in 6-year-old children. The generation R study. PLoS One. 2014;9(7):e91057. doi: 10.1371/journal.pone.0091057 eCollection 2014.
  48. 48.
    Elfrink M, Moll H, Kiefte-de Jong J, El Marroun H, Jaddoe V, Hofman A, et al. Is maternal use of medicines during pregnancy associated with deciduous molar hypomineralisation in the offspring? A prospective, population-based study. Drug Saf. 2013;36(8):627–33.PubMedCrossRefGoogle Scholar
  49. 49.
    Arrow P. Prevalence of developmental enamel defects of the first permanent molars among school children in Western Australia. Aust Dent J. 2008;53(3):250–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Balmer RC, Laskey D, Mahoney E, Toumba KJ. Prevalence of enamel defects and MIH in non-fluoridated and fluoridated communities. Eur J Paediatr Dent. 2005;6(4):209–12.PubMedGoogle Scholar
  51. 51.
    Muratbegovic A, Markovic N, Ganibegovic SM. Molar incisor hypomineralisation in Bosnia and Herzegovina: aetiology and clinical consequences in medium caries activity population. Eur Arch Paediatr Dent. 2007;8(4):189–94.PubMedCrossRefGoogle Scholar
  52. 52.
    Soviero V, Haubek D, Trindade C, Da Matta T, Poulsen S. Prevalence and distribution of demarcated opacities and their sequelae in permanent 1st molars and incisors in 7 to 13-year-old Brazilian children. Acta Odontol Scand. 2009;67(3):170–5.PubMedCrossRefGoogle Scholar
  53. 53.
    da Costa-Silva CM, Jeremias F, de Souza JF, Cordeiro Rde C, Santos-Pinto L, Zuanon AC. Molar incisor hypomineralization: prevalence, severity and clinical consequences in Brazilian children. Int J Paediatr Dent. 2010;20(6):426–34.PubMedCrossRefGoogle Scholar
  54. 54.
    Cho SY, Ki Y, Chu V. Molar incisor hypomineralization in Hong Kong Chinese children. Int J Paediatr Dent. 2008;18(5):348–52.PubMedCrossRefGoogle Scholar
  55. 55.
    Leppaniemi A, Lukinmaa PL, Alaluusua S. Nonfluoride hypomineralizations in the permanent first molars and their impact on the treatment need. Caries Res. 2001;35(1):36–40.PubMedCrossRefGoogle Scholar
  56. 56.
    Petrou MA, Giraki M, Bissar AR, Basner R, Wempe C, Altarabulsi M, et al. Prevalence of molar-incisor-hypomineralisation among school children in four German cities. Int J Paediatr Dent. 2013. doi: 10.1111/ipd.12089. Epub ahead of print.PubMedGoogle Scholar
  57. 57.
    Parikh DR, Ganesh M, Bhaskar V. Prevalence and characteristics of molar incisor hypomineralisation (MIH) in the child population residing in Gandhinagar, Gujarat, India. Eur Arch Paediatr Dent. 2012;13(1):21–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Ghanim A, Bagheri R, Golkari A, Manton D. Molar-incisor hypomineralisation: a prevalence study amongst primary schoolchildren of Shiraz, Iran. Eur Arch Paediatr Dent. 2014;15(2):75–82. doi: 10.1007/s40368-013-0067-y. Epub 2013 Jul 17.PubMedCrossRefGoogle Scholar
  59. 59.
    Ghanim A, Morgan M, Marino R, Bailey D, Manton D. Molar-incisor hypomineralisation: prevalence and defect characteristics in Iraqi children. Int J Paediatr Dent. 2011;21(6):413–21.PubMedCrossRefGoogle Scholar
  60. 60.
    Calderara PC, Gerthoux PM, Mocarelli P, Lukinmaa PL, Tramacere PL, Alaluusua S. The prevalence of molar incisor hypomineralisation (MIH) in a group of Italian school children. Eur J Paediatr Dent. 2005;6(2):79–83.PubMedGoogle Scholar
  61. 61.
    Zawaideh FI, Al-Jundi SH, Al-Jaljoli MH. Molar incisor hypomineralisation: prevalence in Jordanian children and clinical characteristics. Eur Arch Paediatr Dent. 2011;12(1):31–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Fteita D, Ali A, Alaluusua S. Molar-incisor hypomineralization (MIH) in a group of school-aged children in Benghazi, Libya. Eur Arch Paediatr Dent. 2006;7(2):92–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Jasulaityte L, Veerkamp JS, Weerheijm KL. Molar incisor hypomineralization: review and prevalence data from the study of primary school children in Kaunas/Lithuania. Eur Arch Paediatr Dent. 2007;8(2):87–94.PubMedCrossRefGoogle Scholar
  64. 64.
    Mahoney EK, Morrison DG. The prevalence of molar-incisor hypomineralisation (MIH) in Wainuiomata children. N Z Dent J. 2009;105(4):121–7.PubMedGoogle Scholar
  65. 65.
    Mahoney EK, Morrison DG. Further examination of the prevalence of MIH in the Wellington region. N Z Dent J. 2011;107(3):79–84.PubMedGoogle Scholar
  66. 66.
    Martinez Gomez TP, Guinot Jimeno F, Bellet Dalmau LJ, Giner TL. Prevalence of molar-incisor hypomineralisation observed using transillumination in a group of children from Barcelona (Spain). Int J Paediatr Dent. 2012;22(2):100–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Garcia-Margarit M, Catala-Pizarro M, Montiel-Company JM, Almerich-Silla JM. Epidemiologic study of molar-incisor hypomineralization in 8-year-old Spanish children. Int J Paediatr Dent. 2014;24(1):14–22. doi: 10.1111/ipd.12020. Epub 2013 Jan 14.PubMedCrossRefGoogle Scholar
  68. 68.
    Weerheijm KL, Groen HJ, Beentjes VE, Poorterman JH. Prevalence of cheese molars in eleven-year-old Dutch children. ASDC J Dent Child. 2001;68(4):259–62. 29.PubMedGoogle Scholar
  69. 69.
    Jasulaityte L, Weerheijm KL, Veerkamp JS. Prevalence of molar-incisor-hypomineralisation among children participating in the Dutch National Epidemiological Survey (2003). Eur Arch Paediatr Dent. 2008;9(4):218–23.PubMedCrossRefGoogle Scholar
  70. 70.
    Kuscu OO, Caglar E, Sandalli N. The prevalence and aetiology of molar-incisor hypomineralisation in a group of children in Istanbul. Eur J Paediatr Dent. 2008;9(3):139–44.Google Scholar
  71. 71.
    Chawla N, Messer LB, Silva M. Clinical studies on molar-incisor-hypomineralisation part 1: distribution and putative associations. Eur Arch Paediatr Dent. 2008;9(4):180–90.PubMedCrossRefGoogle Scholar
  72. 72.
    Elfrink ME, ten Cate JM, Jaddoe VW, Hofman A, Moll HA, Veerkamp JS. Deciduous molar hypomineralization and molar incisor hypomineralization. J Dent Res. 2012;91(6):551–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Karin L. Weerheijm
    • 1
    Email author
  • Marlies E. C. Elfrink
    • 2
  • Nicky Kilpatrick
    • 3
  1. 1.Department of Cariology Endodontology PedodontologyAcademic Centre for Dentistry (ACTA), Paediatric Dentist, Kindertand Zuid and Member Paediatric Research Project (PREP)AmsterdamThe Netherlands
  2. 2.Department of Cariology Endodontology PedodontologyAcademic Centre for Dentistry (ACTA), Paediatric Dentist, Mondzorgcentrum Nijverdal and Member Paediatric Research Project (PREP)NijverdalThe Netherlands
  3. 3.Cleft and Craniofacial ResearchMurdoch Childrens Research InstituteParkville, MelbourneAustralia

Personalised recommendations