Enamel Defects in the Permanent Dentition: Prevalence and Etiology

  • Robert P. Anthonappa
  • Nigel M. KingEmail author


The prevalence of developmental defects of enamel (DDE) in the permanent dentition in developed countries has been reported to be in the range of 9–68 % and with no gender predilection. Several etiological factors have been implicated as being responsible for DDE in the permanent teeth. Although local, systemic, genetic or environmental factors have been attributed to DDE frequently they are likely to be multifactorial in nature. These factors are discussed in relation to the timing of enamel development with consideration of the evidence, or lack thereof, for the association between the putative etiological factors and the nature of the subsequent abnormalities.


Dental enamel Permanent dentition Abnormalities Etiology Prevalence 


  1. 1.
    AlQahtani SJ, Hector MP, Liversidge HM. Brief communication: the London atlas of human tooth development and eruption. Am J Phys Anthropol. 2010;142(3):481–90.PubMedCrossRefGoogle Scholar
  2. 2.
    King N, Wei S. A review of the prevalence of developmental enamel defects in permanent teeth. J Paleopathol. 1992;2:342–57.Google Scholar
  3. 3.
    Suckling GW, Brown RH, Herbison GP. The prevalence of developmental defects of enamel in 696 nine-year-old New Zealand children participating in a health and development study. Community Dent Health. 1985;2(4):303–13.PubMedGoogle Scholar
  4. 4.
    Dooland MB, Wylie A. A photographic study of enamel defects among South Australian school children. Aust Dent J. 1989;34(5):470–3.PubMedCrossRefGoogle Scholar
  5. 5.
    Dummer PM, Kingdon A, Kingdon R. Prevalence and distribution by tooth type and surface of developmental defects of dental enamel in a group of 15- to 16-year-old children in South Wales. Community Dent Health. 1990;7(4):369–77.PubMedGoogle Scholar
  6. 6.
    Nunn JH, Murray JJ, Reynolds P, Tabari D, Breckon J. The prevalence of developmental defects of enamel in 15–16-year-old children residing in three districts (natural fluoride, adjusted fluoride, low fluoride) in the north east of England. Community Dent Health. 1992;9(3):235–47.PubMedGoogle Scholar
  7. 7.
    Fyffe HE, Deery C, Pitts NB. Developmental defects of enamel in regularly attending adolescent dental patients in Scotland; prevalence and patient awareness. Community Dent Health. 1996;13(2):76–80.PubMedGoogle Scholar
  8. 8.
    Rugg-Gunn AJ, al-Mohammadi SM, Butler TJ. Effects of fluoride level in drinking water, nutritional status, and socio-economic status on the prevalence of developmental defects of dental enamel in permanent teeth in Saudi 14-year-old boys. Caries Res. 1997;31(4):259–67.PubMedCrossRefGoogle Scholar
  9. 9.
    Hiller KA, Wilfart G, Schmalz G. Developmental enamel defects in children with different fluoride supplementation–a follow-up study. Caries Res. 1998;32(6):405–11.PubMedCrossRefGoogle Scholar
  10. 10.
    Dini EL, Holt RD, Bedi R. Prevalence of caries and developmental defects of enamel in 9–10 year old children living in areas in Brazil with differing water fluoride histories. Br Dent J. 2000;188(3):146–9.PubMedGoogle Scholar
  11. 11.
    Jalevik B, Noren JG, Klingberg G, Barregard L. Etiologic factors influencing the prevalence of demarcated opacities in permanent first molars in a group of Swedish children. Eur J Oral Sci. 2001;109(4):230–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Zagdwon AM, Toumba KJ, Curzon ME. The prevalence of developmental enamel defects in permanent molars in a group of English school children. Eur J Paediatr Dent. 2002;3(2):91–6.PubMedGoogle Scholar
  13. 13.
    Ekanayake L, van der Hoek W. Prevalence and distribution of enamel defects and dental caries in a region with different concentrations of fluoride in drinking water in Sri Lanka. Int Dent J. 2003;53(4):243–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Cochran JA, Ketley CE, Arnadottir IB, Fernandes B, Koletsi-Kounari H, Oila AM, et al. A comparison of the prevalence of fluorosis in 8-year-old children from seven European study sites using a standardized methodology. Community Dent Oral Epidemiol. 2004;32 Suppl 1:28–33.PubMedCrossRefGoogle Scholar
  15. 15.
    Mackay TD, Thomson WM. Enamel defects and dental caries among Southland children. N Z Dent J. 2005;101(2):35–43.PubMedGoogle Scholar
  16. 16.
    Balmer RC, Laskey D, Mahoney E, Toumba KJ. Prevalence of enamel defects and MIH in non-fluoridated and fluoridated communities. Eur J Paediatr Dent. 2005;6(4):209–12.PubMedGoogle Scholar
  17. 17.
    Wong HM, McGrath C, Lo EC, King NM. Association between developmental defects of enamel and different concentrations of fluoride in the public water supply. Caries Res. 2006;40(6):481–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Hoffmann RH, de Sousa Mda L, Cypriano S. Prevalence of enamel defects and the relationship to dental caries in deciduous and permanent dentition in Indaiatuba, Sao Paulo, Brazil. Cad Saude Publica. 2007;23(2):435–44.PubMedCrossRefGoogle Scholar
  19. 19.
    Muratbegovic A, Zukanovic A, Markovic N. Molar-incisor-hypomineralisation impact on developmental defects of enamel prevalence in a low fluoridated area. Eur Arch Paediatr Dent. 2008;9(4):228–31.PubMedCrossRefGoogle Scholar
  20. 20.
    Arrow P. Prevalence of developmental enamel defects of the first permanent molars among school children in Western Australia. Aust Dent J. 2008;53(3):250–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Kanagaratnam S, Schluter P, Durward C, Mahood R, Mackay T. Enamel defects and dental caries in 9-year-old children living in fluoridated and nonfluoridated areas of Auckland, New Zealand. Community Dent Oral Epidemiol. 2009;37(3):250–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Seow WK, Ford D, Kazoullis S, Newman B, Holcombe T. Comparison of enamel defects in the primary and permanent dentitions of children from a low-fluoride District in Australia. Pediatr Dent. 2011;33(3):207–12.PubMedGoogle Scholar
  23. 23.
    Casanova-Rosado AJ, Medina-Solis CE, Casanova-Rosado JF, Vallejos-Sanchez AA, Martinez-Mier EA, Loyola-Rodriguez JP, et al. Association between developmental enamel defects in the primary and permanent dentitions. Eur J Paediatr Dent. 2011;12(3):155–8.PubMedGoogle Scholar
  24. 24.
    Robles MJ, Ruiz M, Bravo-Perez M, Gonzalez E, Penalver MA. Prevalence of enamel defects in primary and permanent teeth in a group of schoolchildren from Granada (Spain). Med Oral Patol Oral Cir Bucal. 2013;18(2):e187–93.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Vargas-Ferreira F, Zeng J, Thomson WM, Peres MA, Demarco FF. Association between developmental defects of enamel and dental caries in schoolchildren. J Dent. 2014;42(5):540–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Angelillo IF, Romano F, Fortunato L, Montanaro D. Prevalence of dental caries and enamel defects in children living in areas with different water fluoride concentrations. Community Dent Health. 1990;7(3):229–36.PubMedGoogle Scholar
  27. 27.
    Suckling GW, Pearce EI. Developmental defects of enamel in a group of New Zealand children: their prevalence and some associated etiological factors. Community Dent Oral Epidemiol. 1984;12(3):177–84.PubMedCrossRefGoogle Scholar
  28. 28.
    de Liefde B, Herbison GP. Prevalence of developmental defects of enamel and dental caries in New Zealand children receiving differing fluoride supplementation. Community Dent Oral Epidemiol. 1985;13(3):164–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Hillson S, Bond S. Relationship of enamel hypoplasia to the pattern of tooth crown growth: a discussion. Am J Phys Anthropol. 1997;104(1):89–103.PubMedCrossRefGoogle Scholar
  30. 30.
    King N. Prevalence and characteristics of developmental defects of dental enamel in Hong Kong. PhD thesis, The University of Hong Kong; 1990.Google Scholar
  31. 31.
    Giro CM. Enamel hypoplasia in human teeth; an examination of its causes. J Am Dent Assoc. 1947;34(5):310–7.PubMedGoogle Scholar
  32. 32.
    Jorgenson RJ, Yost C. Etiology of enamel dysplasia. J Pedod. 1982;6(4):315–29.PubMedGoogle Scholar
  33. 33.
    Sleiter R, von Arx T. Developmental disorders of permanent teeth after injuries of their primary predecessors. A retrospective study. Schweiz Monatsschr Zahnmed. 2002;112(3):214–9.PubMedGoogle Scholar
  34. 34.
    Hall S, Iranpour B. The effect of trauma on normal tooth development. Report of two cases. ASDC J Dent Child. 1968;35(4):291–5.PubMedGoogle Scholar
  35. 35.
    Holan G, Topf J, Fuks AB. Effect of root canal infection and treatment of traumatized primary incisors on their permanent successors. Endod Dent Traumatol. 1992;8(1):12–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Dixon DA. Defects of structure and formation of the teeth in persons with cleft palate and the effect of reparative surgery on the dental tissues. Oral Surg Oral Med Oral Pathol. 1968;25(3):435–46.PubMedCrossRefGoogle Scholar
  37. 37.
    Kleine-Hakala M, Hukki J, Hurmerinta K. Effect of mandibular distraction osteogenesis on developing molars. Orthod Craniofac Res. 2007;10(4):196–202.PubMedCrossRefGoogle Scholar
  38. 38.
    Ranta R. A review of tooth formation in children with cleft lip/palate. Am J Orthod Dentofacial Orthop. 1986;90(1):11–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Williamson JJ. Trauma during exodontia. An aetiologic factor in hypoplastic premolars. Br Dent J. 1966;121(6):284–9.PubMedGoogle Scholar
  40. 40.
    Kimoto S, Suga H, Yamaguchi M, Uchimura N, Ikeda M, Kakizawa T. Hypoplasia of primary and permanent teeth following osteitis and the implications of delayed diagnosis of a neonatal maxillary primary molar. Int J Paediatr Dent. 2003;13(1):35–40.PubMedCrossRefGoogle Scholar
  41. 41.
    McCormick J, Filostrat DJ. Injury to the teeth of succession by abscess of the temporary teeth. J Dent Child. 1967;34(6):501–4.PubMedGoogle Scholar
  42. 42.
    Turner J. Effects of abscess arising from temporary teeth. Br J Dent Sci. 1906;49:562–4.Google Scholar
  43. 43.
    Brook AH, Winter GB. Developmental arrest of permanent tooth germs following pulpal infection of deciduous teeth. Br Dent J. 1975;139(1):9–11.PubMedCrossRefGoogle Scholar
  44. 44.
    Lunt RC, Law DB. A review of the chronology of calcification of deciduous teeth. J Am Dent Assoc. 1974;89(3):599–606.PubMedGoogle Scholar
  45. 45.
    Knothe H, Dette GA. Antibiotics in pregnancy: toxicity and teratogenicity. Infection. 1985;13(2):49–51.PubMedCrossRefGoogle Scholar
  46. 46.
    Phillips-Howard PA, Wood D. The safety of antimalarial drugs in pregnancy. Drug Saf. 1996;14(3):131–45.PubMedCrossRefGoogle Scholar
  47. 47.
    Billings RJ, Berkowitz RJ, Watson G. Teeth. Pediatrics. 2004;113(4 Suppl):1120–7.PubMedGoogle Scholar
  48. 48.
    Fejerskov O, Larsen MJ, Richards A, Baelum V. Dental tissue effects of fluoride. Adv Dent Res. 1994;8(1):15–31.PubMedGoogle Scholar
  49. 49.
    Rozier RG. Epidemiologic indices for measuring the clinical manifestations of dental fluorosis: overview and critique. Adv Dent Res. 1994;8(1):39–55.PubMedGoogle Scholar
  50. 50.
    Hong L, Levy SM, Warren JJ, Broffitt B, Cavanaugh J. Fluoride intake levels in relation to fluorosis development in permanent maxillary central incisors and first molars. Caries Res. 2006;40(6):494–500.PubMedCrossRefGoogle Scholar
  51. 51.
    Pendrys DG, Stamm JW. Relationship of total fluoride intake to beneficial effects and enamel fluorosis. J Dent Res. 1990;69 Spec No:529–38. Discussion 56–7.PubMedGoogle Scholar
  52. 52.
    Cutress TW, Suckling GW. Differential diagnosis of dental fluorosis. J Dent Res. 1990;69 Spec No:714–20. Discussion 21.PubMedGoogle Scholar
  53. 53.
    Curzon ME, Spector PC. Enamel mottling in a high strontium area of the U.S.A. Community Dent Oral Epidemiol. 1977;5(5):243–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Alaluusua S, Lukinmaa PL. Developmental dental toxicity of dioxin and related compounds–a review. Int Dent J. 2006;56(6):323–31.PubMedCrossRefGoogle Scholar
  55. 55.
    Gao Y, Sahlberg C, Kiukkonen A, Alaluusua S, Pohjanvirta R, Tuomisto J, et al. Lactational exposure of Han/Wistar rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin interferes with enamel maturation and retards dentin mineralization. J Dent Res. 2004;83(2):139–44.PubMedCrossRefGoogle Scholar
  56. 56.
    Alaluusua S, Lukinmaa PL, Koskimies M, Pirinen S, Holtta P, Kallio M, et al. Developmental dental defects associated with long breast feeding. Eur J Oral Sci. 1996;104(5–6):493–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Alaluusua S, Lukinmaa PL, Vartiainen T, Partanen M, Torppa J, Tuomisto J. Polychlorinated dibenzo-p-dioxins and dibenzofurans via mother’s milk may cause developmental defects in the child’s teeth. Environ Toxicol Pharmacol. 1996;1(3):193–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Alaluusua S, Calderara P, Gerthoux PM, Lukinmaa PL, Kovero O, Needham L, et al. Developmental dental aberrations after the dioxin accident in Seveso. Environ Health Perspect. 2004;112(13):1313–8.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Jan J, Sovcikova E, Kocan A, Wsolova L, Trnovec T. Developmental dental defects in children exposed to PCBs in eastern Slovakia. Chemosphere. 2007;67(9):S350–4.PubMedCrossRefGoogle Scholar
  60. 60.
    Kuscu OO, Caglar E, Aslan S, Durmusoglu E, Karademir A, Sandalli N. The prevalence of molar incisor hypomineralization (MIH) in a group of children in a highly polluted urban region and a windfarm-green energy island. Int J Paediatr Dent. 2009;19(3):176–85.PubMedCrossRefGoogle Scholar
  61. 61.
    Laisi S, Kiviranta H, Lukinmaa PL, Vartiainen T, Alaluusua S. Molar-incisor-hypomineralisation and dioxins: new findings. Eur Arch Paediatr Dent. 2008;9(4):224–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Wozniak K. Developmental abnormalities of mineralization in populations with varying exposure to fluorine compounds. Ann Acad Med Stetin. 2000;46:305–15.PubMedGoogle Scholar
  63. 63.
    Giunta JL. Dental changes in hypervitaminosis D. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(4):410–3.PubMedCrossRefGoogle Scholar
  64. 64.
    Lawson BF, Stout FW, Ahern DE, Sneed WD. The incidence of enamel hypoplasia associated with chronic pediatric lead poisoning. S C Dent J. 1971;29(11):5–10.PubMedGoogle Scholar
  65. 65.
    Fouda N, Caracatsanis M, Hammarstrom L. Developmental disturbances of the rat molar induced by two diphosphonates. Adv Dent Res. 1989;3(2):234–40.PubMedGoogle Scholar
  66. 66.
    Jan J, Vrbic V. Polychlorinated biphenyls cause developmental enamel defects in children. Caries Res. 2000;34(6):469–73.PubMedCrossRefGoogle Scholar
  67. 67.
    Minicucci EM, Lopes LF, Crocci AJ. Dental abnormalities in children after chemotherapy treatment for acute lymphoid leukemia. Leuk Res. 2003;27(1):45–50.PubMedCrossRefGoogle Scholar
  68. 68.
    Duggal MS, Curzon ME, Bailey CC, Lewis IJ, Prendergast M. Dental parameters in the long-term survivors of childhood cancer compared with siblings. Oral Oncol. 1997;33(5):348–53.PubMedCrossRefGoogle Scholar
  69. 69.
    Pajari U, Lanning M. Developmental defects of teeth in survivors of childhood ALL are related to the therapy and age at diagnosis. Med Pediatr Oncol. 1995;24(5):310–4.PubMedCrossRefGoogle Scholar
  70. 70.
    Crawford PJ, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet J Rare Dis. 2007;2:17.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Arwill T, Olsson O, Bergenholtz A. Epidermolysis bullosa hereditaria. 3. A histologic study of changes in teeth in the polydysplastic dystrophic and lethal forms. Oral Surg Oral Med Oral Pathol. 1965;19:723–44.PubMedCrossRefGoogle Scholar
  72. 72.
    Wright JT, Johnson LB, Fine JD. Development defects of enamel in humans with hereditary epidermolysis bullosa. Arch Oral Biol. 1993;38(11):945–55.PubMedCrossRefGoogle Scholar
  73. 73.
    Jensen SB, Illum F, Dupont E. Nature and frequency of dental changes in idiopathic hypoparathyroidism and pseudohypoparathyroidism. Scand J Dent Res. 1981;89(1):26–37.PubMedGoogle Scholar
  74. 74.
    Spangler GS, Hall KI, Kula K, Hart TC, Wright JT. Enamel structure and composition in the tricho-dento-osseous syndrome. Connect Tissue Res. 1998;39(1–3):165–75. Discussion 87–94.PubMedCrossRefGoogle Scholar
  75. 75.
    Jacobsen PE, Haubek D, Henriksen TB, Ostergaard JR, Poulsen S. Developmental enamel defects in children born preterm: a systematic review. Eur J Oral Sci. 2014;122(1):7–14.PubMedCrossRefGoogle Scholar
  76. 76.
    Beentjes VE, Weerheijm KL, Groen HJ. Factors involved in the aetiology of molar-incisor hypomineralisation (MIH). Eur J Paediatr Dent. 2002;3(1):9–13.PubMedGoogle Scholar
  77. 77.
    Bell DS. Protean manifestations of vitamin D deficiency, part 1: the epidemic of deficiency. South Med J. 2011;104(5):331–4.PubMedCrossRefGoogle Scholar
  78. 78.
    Foster BL, Nociti Jr FH, Somerman MJ. The rachitic tooth. Endocr Rev. 2014;35(1):1–34.PubMedCrossRefGoogle Scholar
  79. 79.
    Flanagan N, O’Connor WJ, McCartan B, Miller S, McMenamin J, Watson R. Developmental enamel defects in tuberous sclerosis: a clinical genetic marker? J Med Genet. 1997;34(8):637–9.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Narang A, Maguire A, Nunn JH, Bush A. Oral health and related factors in cystic fibrosis and other chronic respiratory disorders. Arch Dis Child. 2003;88(8):702–7.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Rasmusson CG, Eriksson MA. Celiac disease and mineralisation disturbances of permanent teeth. Int J Paediatr Dent. 2001;11(3):179–83.PubMedCrossRefGoogle Scholar
  82. 82.
    Wierink CD, van Diermen DE, Aartman IH, Heymans HS. Dental enamel defects in children with coeliac disease. Int J Paediatr Dent. 2007;17(3):163–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Zambrano M, Nikitakis NG, Sanchez-Quevedo MC, Sauk JJ, Sedano H, Rivera H. Oral and dental manifestations of vitamin D-dependent rickets type I: report of a pediatric case. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95(6):705–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Paediatric DentistrySchool of Dentistry, Faculty of Medicine, Dentistry and Health Sciences, University of Western AustraliaNedlands, PerthAustralia

Personalised recommendations