Advertisement

Future Possibilities for Managing Dental Enamel Defects: Recent and Current Research Approaches

  • Agata Czajka-Jakubowska
  • Jun Liu
  • Sywe-Ren Chang
  • Brian H. ClarksonEmail author
Chapter

Abstract

The cause of an enamel defect can be genetic, systemic, local, and/or induced. The repair of these defects spans the fields from gene therapy to invasive or noninvasive conventional restorative therapies. No matter how disfiguring some of the genetic and systemic conditions are, it is unlikely that the modern techniques of genetic and tissue engineering will be used in the near future to repair or prevent these enamel defects. Clinicians will have to rely on more conventional invasive, minimally invasive, and noninvasive techniques to treat this problem. This chapter describes some new and novel techniques which are in use and/or development for the repair of enamel defects. They include: growing enamel crystals on dental substrates, penetration of carious lesions with self-assembling molecules which encourage mineral formation, infiltrating carious lesions with resins, a paint on “enamel” using a self-etch resin, and an “enamel” crystal containing flexible laminate – a tooth “Band-Aid.”

Keywords

Enamel defects AI rescue Non-invasive therapies Fluorhydroxyapatite crystals Enamel “Band-Aid” 

References

  1. 1.
    Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, et al. Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci U S A. 2009;106(32):13475–80.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Barron MJ, Brookes SJ, Kirkham J, Shore RC, Hunt C, Mironov A, et al. A mutation in the mouse Amelx tri-tyrosyl domain results in impaired secretion of amelogenin and phenocopies human X-linked amelogenesis imperfecta. Hum Mol Genet. 2010;19(7):1230–47.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Brookes SJ, Barron MJ, Boot-Handford R, Kirkham J, Dixon MJ. Endoplasmic reticulum stress in amelogenesis imperfecta and phenotypic rescue using 4-phenylbutyrate. Hum Mol Genet. 2014;23(9):2468–80.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Chen L, Liang K, Li J, Wu D, Zhou X, Li J. Regeneration of biomimetic hydroxyapatite on etched human enamel by anionic PAMAM template in vitro. Arch Oral Biol. 2013;58(8):975–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Habelitz S, DenBesten PK, Marshall SJ, Marshall GW, Li W. Self-assembly and effect on crystal growth of the leucine-rich amelogenin peptide. Eur J Oral Sci. 2006;114 Suppl 1:315–9. Discussion 27 – 9, 82.PubMedCrossRefGoogle Scholar
  6. 6.
    Habelitz S, Kullar A, Marshall SJ, DenBesten PK, Balooch M, Marshall GW, et al. Amelogenin-guided crystal growth on fluoroapatite glass-ceramics. J Dent Res. 2004;83(9):698–702.PubMedCrossRefGoogle Scholar
  7. 7.
    Ishikawa K, Eanes ED, Tung MS. The effect of supersaturation on apatite crystal formation in aqueous solutions at physiologic pH and temperature. J Dent Res. 1994;73(8):1462–9.PubMedGoogle Scholar
  8. 8.
    Uskokovic V, Li W, Habelitz S. Biomimetic precipitation of uniaxially grown calcium phosphate crystals from full-length human amelogenin sols. J Bionic Eng. 2011;8(2):114–21.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Wang X, Xia C, Zhang Z, Deng X, Wei S, Zheng G, et al. Direct growth of human enamel-like calcium phosphate microstructures on human tooth. J Nanosci Nanotechnol. 2009;9(2):1361–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Wu D, Yang J, Li J, Chen L, Tang B, Chen X, et al. Hydroxyapatite-anchored dendrimer for in situ remineralization of human tooth enamel. Biomaterials. 2013;34(21):5036–47.PubMedCrossRefGoogle Scholar
  11. 11.
    Kirkham J, Firth A, Vernals D, Boden N, Robinson C, Shore RC, et al. Self-assembling peptide scaffolds promote enamel remineralization. J Dent Res. 2007;86(5):426–30.PubMedCrossRefGoogle Scholar
  12. 12.
    Yin Y, Yun S, Fang J, Chen H. Chemical regeneration of human tooth enamel under near-physiological conditions. Chem Commun (Camb). 2009 (39):5892–4.Google Scholar
  13. 13.
    Czajka-Jakubowska AE, Liu J, Chang SR, Clarkson BH. The effect of the surface characteristics of various substrates on fluorapatite crystal growth, alignment, and spatial orientation. Med Sci Monit. 2009;15(6):Mt84–8.PubMedGoogle Scholar
  14. 14.
    Brunton PA, Davies RP, Burke JL, Smith A, Aggeli A, Brookes SJ, et al. Treatment of early caries lesions using biomimetic self-assembling peptides–a clinical safety trial. Br Dent J. 2013;215(4):E6.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Mertz-Fairhurst EJ, Curtis Jr JW, Ergle JW, Rueggeberg FA, Adair SM. Ultraconservative and cariostatic sealed restorations: results at year 10. J Am Dent Assoc. 1998;129(1):55–66.PubMedCrossRefGoogle Scholar
  16. 16.
    Anusavice KJ. Treatment regimens in preventive and restorative dentistry. J Am Dent Assoc. 1995;126(6):727–43.PubMedCrossRefGoogle Scholar
  17. 17.
    Meyer-Lueckel H, Paris S. Improved resin infiltration of natural caries lesions. J Dent Res. 2008;87(12):1112–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Rocha Gomes Torres C, Borges AB, Torres LM, Gomes IS, de Oliveira RS. Effect of caries infiltration technique and fluoride therapy on the colour masking of white spot lesions. J Dent. 2011;39(3):202–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Crombie F, Manton D, Palamara J, Reynolds E. Resin infiltration of developmentally hypomineralised enamel. Int J Paediatr Dent. 2014;24(1):51–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Firth A, Aggeli A, Burke JL, Yang X, Kirkham J. Biomimetic self-assembling peptides as injectable scaffolds for hard tissue engineering. Nanomedicine (Lond). 2006;1(2):189–99.CrossRefGoogle Scholar
  21. 21.
    Chang S, Chen H, Liu J, Wood D, Bentley P, Clarkson B. Synthesis of a potentially bioactive, hydroxyapatite-nucleating molecule. Calcif Tissue Int. 2006;78(1):55–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Chen H, Tang Z, Liu J, Sun K, Chang SR, Peters MC, et al. Acellular synthesis of a human enamel-like microstructure. Adv Mater. 2006;18(14):1846–51.CrossRefGoogle Scholar
  23. 23.
    Liu J, Jin T, Chang S, Czajka-Jakubowska A, Zhang Z, Nor JE, et al. The effect of novel fluorapatite surfaces on osteoblast-like cell adhesion, growth, and mineralization. Tissue Eng Part A. 2010;16(9):2977–86.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Liu J, Jin TC, Chang S, Czajka-Jakubowska A, Clarkson BH. Adhesion and growth of dental pulp stem cells on enamel-like fluorapatite surfaces. J Biomed Mater Res A. 2011;96(3):528–34.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Liu J, Wang X, Jin Q, Jin T, Chang S, Zhang Z, et al. The stimulation of adipose-derived stem cell differentiation and mineralization by ordered rod-like fluorapatite coatings. Biomaterials. 2012;33(20):5036–46.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Clark DR, Czajka-Jakubowska A, Rick C, Liu J, Chang S, Clarkson BH. In vitro anti-caries effect of fluoridated hydroxyapatite-coated preformed metal crowns. Eur Arch Paediatr Dent. 2013;14(4):253–8.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Chen H, Sun K, Tang Z, Law RV, Mansfield JF, Clarkson BH. Synthesis of fluorapatite nanorods and nanowires by direct precipitation from solution. Cryst Growth Des. 2006;6(6):1504–8.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Agata Czajka-Jakubowska
    • 1
  • Jun Liu
    • 2
  • Sywe-Ren Chang
    • 2
  • Brian H. Clarkson
    • 2
    Email author
  1. 1.Department of Maxillofacial Orthopedics and OrthodonticsPoznan University of Medical SciencesPoznanPoland
  2. 2.Department of Cariology, Restorative Sciences and EndodonticsSchool of Dentistry, University of MichiganAnn ArborUSA

Personalised recommendations