Skip to main content

Reaction Wheel Parameter Identification and Control through Receding Horizon-Based Null Motion Excitation

  • Conference paper
Advances in Estimation, Navigation, and Spacecraft Control (ENCS 2012)

Abstract

Additional actuator motion, constrained to the null-space of the Reaction Wheel Array (RWA) of an over-actuated spacecraft, can be exploited for learning system parameters without inducing large perturbations to the controlled body (e.g., spacecraft bus). In this paper a receding horizon optimization approach is developed to generate such a null-motion excitation (NME) that facilitates the identification of the actuator misalignments with perturbations that are local to the nominal trajectory and decreasing with the decrease in size of the parameter estimation error. The receding horizon approach minimizes an objective function that penalizes the parameter error covariance and the null-motion excitation. The potential of the receding horizon approach to outperform the baseline null motion excitation algorithm proposed in an earlier publication is demonstrated through simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MacKunis, W., Dupree, K., Fitz-Coy, N., Dixon, W.: Adaptive satellite attitude control in the presence of inertia and CMG gimbal friction uncertainties. Journal of the Astronautical Sciences 56(1), 121–134 (2008)

    Article  Google Scholar 

  2. Dixon, W.: Nonlinear control of engineering systems: A Lyapunov-based approach. Birkhauser (2003)

    Google Scholar 

  3. Mercker, T., Akella, M.: Onboard adaptive compensation for large-scale misalignments in responsive space systems. In: AAS Guidance and Control Conference, Breckenridge, Co. (2010)

    Google Scholar 

  4. Ahmed, J., Coppola, V., Bernstein, D.: Asymptotic tracking of spacecraft attitude motion with inertia matrix identification. In: Proceedings of the 36th IEEE Conference on Decision and Control, vol. 3, pp. 2471–2476. IEEE (2002)

    Google Scholar 

  5. Chaturvedi, N., Bernstein, D., Ahmed, J., Bacconi, F., McClamroch, N.: Globally convergent adaptive tracking of angular velocity and inertia identification for a 3-DOF rigid body. IEEE Transactions on Control Systems Technology 14(5), 841–853 (2006)

    Article  Google Scholar 

  6. Ma, O., Dang, H., Pham, K.: On-Orbit Identification of Inertia Properties of Spacecraft Using a Robotic Arm. Journal of Guidance, Control, and Dynamics 31(6) (2008)

    Google Scholar 

  7. Chakrabortty, A., Arcak, M., Tsiotras, P.: Robust design of a spacecraft attitude tracking control system with actuator uncertainties. In: 47th IEEE Conference on Decision and Control, CDC 2008, pp. 1587–1592. IEEE (2009)

    Google Scholar 

  8. Costic, B., Dawson, D., De Queiroz, M., Kapila, V.: A quaternion-based adaptive attitude tracking controller without velocity measurements. In: Proceedings of the 39th IEEE Conference on Decision and Control, vol. 3, pp. 2424–2429. IEEE (2002)

    Google Scholar 

  9. Astrom, K., Wittenmark, B.: Adaptive control. Addison-Wesley Longman Publishing Co., Inc., Boston (1994)

    Google Scholar 

  10. Sastry, S., Bodson, M.: Adaptive control: stability, convergence, and robustness (1989)

    Google Scholar 

  11. Leve, F., Jah, M.: Spacecraft actuator alignment determination through null motion excitation. In: Proceedings of 62nd International Astronautical Congress (2011)

    Google Scholar 

  12. Kolmanovsky, I., Winstead, V.: A receding horizon optimal control approach to active state and parameter estimation in automotive systems. In: Proceedings of 2006 IEEE Conference on Control Applications, pp. 2796–2801. IEEE (2006)

    Google Scholar 

  13. Kolmanovsky, I., Filev, D.P.: Optimal finite and receding horizon control for identification in automotive systems. In: Alberer, D., Hjalmarsson, H., del Re, L. (eds.) Identification for Automotive Systems. LNCIS, vol. 418, pp. 327–348. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Pittelkau, M.E.: Calibration and attitude determination with redundant inertial measurement units. Journal of Guidance, Control, and Dynamics 28(4), 743–752 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avishai Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weiss, A., Leve, F., Kolmanovsky, I.V., Jah, M. (2015). Reaction Wheel Parameter Identification and Control through Receding Horizon-Based Null Motion Excitation. In: Choukroun, D., Oshman, Y., Thienel, J., Idan, M. (eds) Advances in Estimation, Navigation, and Spacecraft Control. ENCS 2012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44785-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44785-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44784-0

  • Online ISBN: 978-3-662-44785-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics