Skip to main content

Spacecraft Attitude Determination with Sun Sensors, Horizon Sensors and Gyros: Comparison of Steady-State Kalman Filter and Extended Kalman Filter

  • Conference paper
Advances in Estimation, Navigation, and Spacecraft Control (ENCS 2012)

Abstract

Attitude determination, along with attitude control, is critical to functioning of every space mission. In this paper, we investigate and compare, through simulation, the application of two autonomous sequential attitude estimation algorithms, adopted from the literature, for attitude determination using attitude sensors (sun sensor and horizon sensors) and rate-integrating gyros. The two algorithms are: the direction cosine matrix (DCM) based steady-state Kalman Filter, and the classic quaternion-based Extended Kalman Filter. To make the analysis realistic, as well as to improve the attitude determination accuracies, detailed sensor measurement models are developed. Modifications in the attitude determination algorithms for estimation of additional states to account for sensor biases and misalignments are presented. A modular six degree-of-freedom closed-loop simulation, developed in house, is used to observe and compare the performances of the attitude determination algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Markley, F.L.: Spacecraft attitude determination methods. In: Israel Annual Conference on Aerospace Sciences (2000)

    Google Scholar 

  2. Markley, F.L., Reynolds, R.G.: Analytic steady-state accuracy of a spacecraft attitude estimator. Journal of Guidance, Control, and Dynamics 23(6), 1065–1067 (2000)

    Article  Google Scholar 

  3. Leerts, E.J., Markley, F.L., Shuster, M.D.: Kalman ltering for spacecraft attitude estimation. Journal of Guidance 5(5), 417–429 (1982)

    Article  Google Scholar 

  4. Pittelkau, M.E.: Kalman filtering for spacecraft system alignment calibration. Journal of Guidance, Control, and Dynamics 24(6), 1187–1195 (2001)

    Article  Google Scholar 

  5. Wertz, J.R. (ed.): Spacecraft Attitude Determination and Control. Computer Sciences Corporation (1978)

    Google Scholar 

  6. Sidi, M.J.: Spacecraft Dynamics and Control. Cambridge University Press (1997)

    Google Scholar 

  7. Hablani, H.B.: Autonomous inertial relative navigation with sight-line-stabilized integrated sensors for spacecraft rendezvous. Journal of Guidance, Control, and Dynamics 32(1) (2009)

    Google Scholar 

  8. Joshi, J., et al.: Conceptual design report - ADCS, PRATHAM. Technical report, Indian Institute of Technology Bombay (2009)

    Google Scholar 

  9. Alex, T.K., Shrivastava, S.K.: On-board corrections of systematic errors of earth sensors. IEEE Transactions on Aerospace and Electronic Systems 25(3), 373–379 (1989)

    Article  Google Scholar 

  10. Alex, T.K., Seshamani, R.: Generation of infrared earth radiance for attitude determination. Journal of Guidance, Control, and Dynamics 12(2), 257–277 (1989)

    Article  Google Scholar 

  11. Hablani, H.B.: Roll/pitch determination with scanning horizon sensors - oblateness and altitude corrections. Journal of Guidance, Control, and Dynamics 18(6), 1355–1364 (1995)

    Article  MATH  Google Scholar 

  12. Tekawy, J.A., Wang, P., Gray, C.W.: Scanning horizon sensor attitude corrections for earth oblateness. Journal of Guidance, Control and Dynamics 19(3), 706–708 (1996)

    Article  MATH  Google Scholar 

  13. Hashmall, J.A., Sedlak, J., Andrews, D., Luquette, R.: Empirical correction for earth sensor horizon radiance variation. In: Proceedings, AAS/GSFC 13th International Symposium on Space Flight Dynamics, Goddard Space Flight Center,Greenbelt, Maryland (May 1998)

    Google Scholar 

  14. Phenneger, M.C., Singhal, S.P., Lee, T.H., Stengle, T.H.: Infrared horizon sensor modeling for attitude determination and control: analysis and mission experience. NASA technical memorandum. National Aeronautics and Space Administration,Scientific and Technical Information Branch (1985)

    Google Scholar 

  15. Crassidis, J.L., Markley, F.L., Kyle, A.M., Kull, K.: Attitude determination improvements for GOES. In: Proceedings, Flight Mechanics/ Estimation Theory Symposium, Goddard Space Flight Center, Greenbelt, Maryland, NASA Conference Publication 3333, pp. 161–175 (May 1996)

    Google Scholar 

  16. STD 16, EADS Sodern Earth Sensor Brochure, www.sodern.com/sites/docs_wsw/RUB_52/STD16.pdf

  17. Deutschmann, J., Bar-Itzhack, I.Y.: Extended kalman filter for the attitude estimation of the earth radiation budget satellite. In: Proceedings, Flight Me chanics/Estimation Theory Symposium, Goddard Space Flight Center, Greenbelt, Maryland, NASA Conference Publication 3050, pp. 333–346 (1989)

    Google Scholar 

  18. ISRO Oceansat-2 Brochure. Oceansat-2-Brochure-1.pdf, http://www.isro.org/pslv-c14/pdf/

  19. Hughes, P.C.: Spacecraft Attitude Dynamics. Dover Publications (2004)

    Google Scholar 

  20. Crassidis, J., Junkins, J.: Optimal Estimation of Dynamic Systems. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. Chapman &Hall/CRC (2004)

    Google Scholar 

  21. Sedlak, J.: Improved earth sensor performance using a sequentially correlated noise model. In: Proceedings, Flight Mechanics Symposium, Goddard Space Flight Center, Greenbelt, Maryland, NASA Conference Publication, pp. 71–83 (May 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaibhav V. Unhelkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Unhelkar, V.V., Hablani, H.B. (2015). Spacecraft Attitude Determination with Sun Sensors, Horizon Sensors and Gyros: Comparison of Steady-State Kalman Filter and Extended Kalman Filter. In: Choukroun, D., Oshman, Y., Thienel, J., Idan, M. (eds) Advances in Estimation, Navigation, and Spacecraft Control. ENCS 2012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44785-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44785-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44784-0

  • Online ISBN: 978-3-662-44785-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics