Skip to main content

Zero Δv Solution to the Angles-Only Range Observability Problem during Orbital Proximity Operations

  • Conference paper

Abstract

During orbital proximity operations, research has shown that angles-only navigation during coasting flight suffers from a lack of range observability. To circumvent this deficiency, previous research has required a prior information on the target geometry or the implementation of special translational maneuvers. This paper shows that the range observability problem during coasting flight can be solved by properly including the offset of the camera from the vehicle center-of-mass in the problem formulation, and by applying appropriate vehicle rotations. Range observability without translational maneuvers (zero Δv) or a priori knowledge of the target geometry is clearly demonstrated using a pseudo 6 degree-of-freedom simulation. Results for v-bar station-keeping, flyby orbits, and circumnavigation (football) orbits are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, A.M., Langley, C., Mukherji, R., Taylor, A.B., Umasuthan, M., Barfoot, T.: Rendezvous lidar sensor system for terminal rendezvous, capture, and berthing to the international space station. In: Proceedings of SPIE, Vol. 6958, SPIE Conference on Sensors and Systems for Space Applications II. SPIE (2008)

    Google Scholar 

  2. Clohessy, W.H., Wiltshire, R.: Terminal guidance system for satellite rendezvous. Journal of the Aero/Space Sciences 27(3), 653–658 (1960)

    Article  MATH  Google Scholar 

  3. Dennehy, C.J., Carpenter, J.R.: A summary of the rendezvous, proximity operations, docking, and undocking (rpodu) lessons learned from the defense advanced research project agency (darpa) orbital express (oe) demonstration system mission. NASA/TM-2011 217088 (2011)

    Google Scholar 

  4. Fehse, W.: Automated Rendezvous and Docking Spacecraft. Cambridge University press, New York (2003)

    Book  Google Scholar 

  5. Gillis, R., Geller, D., Chavez, F.R.: Proximity operations using low thrust propulsion and angles-only measurements in geosynchronous orbits. In: AAS Annual Guidance and Control Conference, AAS, Breckenridge (2011)

    Google Scholar 

  6. Gillis, W.R.: Low Thrust Assisted Angles Only Navigation. Graduate Thesis, Utah State University (2011)

    Google Scholar 

  7. Howard, R.T., Bryan, T.C.: Video guidance sensor for automated capture. In: Space Programs and Technologies Conference, AIAA, Huntsville (1992)

    Google Scholar 

  8. Howard, R.T., Bryan, T.C., Book, M.L.: On-orbit testing of the video guidance sensor. In: Proceedings of SPIE, The International Society for Optical Engineering, vol. 3707, pp. 290–300. SPIE, Bellingham (1999)

    Google Scholar 

  9. Junkins, J.L., Hughes, D.C., Wazni, K.P., Pariyapong, V.: Vision-based navigation for rendezvous and docking and proximity operations. In: 22nd Annual AAS Guidance and Control Conference, Breckenridge, AAS, CO (1999)

    Google Scholar 

  10. Kim, S., Crassidis, J.L., Cheng, Y., Fosbury, A.M.: Kalman filtering for relative spacecraft attitude and position estimation. Journal of Guidance, Control, and Dynamics 30(1), 133–143 (2007)

    Article  Google Scholar 

  11. Lee, D., Pernicka, H.: Integrated system for autonomous proximity operations and docking. International Journal of Aeronautical and Space Science (1), 43–56 (2011)

    Google Scholar 

  12. Maybeck, P.S.: Stochastic models, estimation and control, vol. 1. Navtech Book and Software store (1994)

    Google Scholar 

  13. Parten, R.P., Mayer, J.P.: Development of the gemini operational rendezvous plan. Journal of Spacecraft and Rockets 5(9), 1023–1028 (1968)

    Article  Google Scholar 

  14. Don, J.P.: Shuttle rendezvous and proximity operations. In: Proceedings of the International Symposium, Space dynamics, Toulouse, France, pp. 833–851 (1989)

    Google Scholar 

  15. Petit, A., Marchand, E., Kanan, i.: Vision-based space autonomous rendezvous: A case study. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 619–624. IEEE, San Francisco (2011)

    Google Scholar 

  16. Pinard, D., Reynaud, S., Delpy, P., Strandmoe, S.E.: Accurate and autonomous navigation for the atv. Aerospace Science and Technology, 490–498 (2007)

    Google Scholar 

  17. Rumford, T.E.: Demonstration of autonomous rendezvous technology (dart) project summary. In: Proceedings of SPIE, SPIE Space System Technology and Operations, vol. 5088, SPIE, Orlando (2003)

    Google Scholar 

  18. Sabol, C., Vallado, D.: A fresh look at angles-only orbit determination. In: AAS/AIAA Astrodynamics Specialist Conference, Vol. AAS 99-363, Girdwood, Alaska (1999)

    Google Scholar 

  19. Schmidt, J., Geller, D., Chavez, F.R.: Viability of angles-only navigation for orbital rendezvous operation. In: AIAA-2010-7755, AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario, AIAA, Toronto (2010)

    Google Scholar 

  20. Smith, D.W., Lampkin, B.A.: Sextant sighting measurements from on board the gemini xi1 spacecraft. NASA Technical Note (1968)

    Google Scholar 

  21. Vallado, D.: Fundamentals of Astrodynamics and Applications, vol. 2. Microcosm Press and Kluwer Academic Publishers (2004)

    Google Scholar 

  22. Weismuller, T., Leinz, M.: Gnc technology demonstrated by the orbital express autonomous rendezvous and capture sensor system. In: AAS 29th Annual Guidance and Control Conference, AAS, Breckenridge (2006)

    Google Scholar 

  23. Woffinden, D., Geller, D.: Observability criteria for angles-only navigation. IEEE Transactions on Aerospace and Electronic Systems 45(3), 1194–1208 (2009)

    Article  Google Scholar 

  24. Woffinden, D.C., Geller, K.D.: Relative angles-only navigation and pose estimation for autonomous orbital rendezvous. Journal of Guidance, Control, and Dynamics 30(5), 1455–1469 (2007)

    Article  Google Scholar 

  25. Yim, J.R., Crassidis, J.L., Junkins, J.L.: Autonomous orbit navigation of two spacecraft system using relative line of sight vector measurements. American Astronautical Society 4(257) (2004)

    Google Scholar 

  26. Young, K.A., Alexander, J.D.: Apollo lunar rendezvous. Journal of Spacecraft and Rockets 7(9), 1083–1086 (1970)

    Article  Google Scholar 

  27. Zarchan, P., Musoff, H.: Fundamentals of Kalman filtering: a practical approach, 2nd edn. The American Institute of Aeronautics and Astronautics, Inc. (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itzik Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klein, I., Geller, D.K. (2015). Zero Δv Solution to the Angles-Only Range Observability Problem during Orbital Proximity Operations. In: Choukroun, D., Oshman, Y., Thienel, J., Idan, M. (eds) Advances in Estimation, Navigation, and Spacecraft Control. ENCS 2012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44785-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44785-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44784-0

  • Online ISBN: 978-3-662-44785-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics