Skip to main content

Distribution-Sensitive Construction of the Greedy Spanner

  • Conference paper
Algorithms - ESA 2014 (ESA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8737))

Included in the following conference series:

Abstract

The greedy spanner is the highest quality geometric spanner (in e.g. edge count and weight, both in theory and practice) known to be computable in polynomial time. Unfortunately, all known algorithms for computing it on n points take Ω(n 2) time, limiting its use on large data sets.

We observe that for many point sets, the greedy spanner has many ‘short’ edges that can be determined locally and usually quickly, and few or no ‘long’ edges that can usually be determined quickly using local information and the well-separated pair decomposition. We give experimental results showing large to massive performance increases over the state-of-the-art on nearly all tests and real-life data sets. On the theoretical side we prove a near-linear expected time bound on uniform point sets and a near-quadratic worst-case bound.

Our bound for point sets drawn uniformly and independently at random in a square follows from a local characterization of t-spanners we give on such point sets: we give a geometric property that holds with high probability on such point sets. This property implies that if an edge set on these points has t-paths between pairs of points ‘close’ to each other, then it has t-paths between all pairs of points.

This characterization gives a O(n log2 n log2 logn) expected time bound on our greedy spanner algorithm, making it the first subquadratic time algorithm for this problem on any interesting class of points. We also use this characterization to give a O((n + |E|) log2 n loglogn) expected time algorithm on uniformly distributed points that determines if E is a t-spanner, making it the first subquadratic time algorithm for this problem that does not make assumptions on E.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J.: Region-fault tolerant geometric spanners. Discr. Comp. Geom. 41(4), 556–582 (2009)

    Article  MATH  Google Scholar 

  2. Agarwal, P.K., Klein, R., Knauer, C., Langerman, S., Morin, P., Sharir, M., Soss, M.: Computing the Detour and Spanning Ratio of Paths, Trees, and Cycles in 2D and 3D. Discrete Comput. Geom. 39(1), 17–37 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alewijnse, S.P.A., Bouts, Q.W., ten Brink, A.P., Buchin, K.: Computing the greedy spanner in linear space. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 37–48. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Alewijnse, S.P.A., Bouts, Q.W., ten Brink, A.P., Buchin, K.: Distribution-sensitive construction of the greedy spanner. CoRR, arXiv:1401.1085 (2014)

    Google Scholar 

  5. Atallah, M.: Some dynamic computational geometry problems. Computers and Mathematics with Applications 11, 1171–1181 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bose, P., Carmi, P., Farshi, M., Maheshwari, A., Smid, M.: Computing the greedy spanner in near-quadratic time. Algorithmica 58(3), 711–729 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bose, P., Devroye, L., Evans, W., Kirkpatrick, D.: On the spanning ratio of Gabriel graphs and beta-skeletons. SIAM Journal on Discrete Mathematics 20(2), 412–427 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Buchin, K.: Constructing Delaunay triangulations along space-filling curves. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 119–130. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Callahan, P.B.: Dealing with Higher Dimensions: The Well-Separated Pair Decomposition and Its Applications. PhD thesis, Johns Hopkins University, Baltimore, Maryland (1995)

    Google Scholar 

  10. Chew, L.P.: There are planar graphs almost as good as the complete graph. J. Comput. System Sci. 39(2), 205–219 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Devroye, L.: On the expected size of some graphs in computational geometry. Comput. Math. Appl. 15, 53–64 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eppstein, D., Wortman, K.A.: Minimum dilation stars. Comput. Geom. 37(1), 27–37 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Geometric spanners for routing in mobile networks. IEEE J. Selected Areas in Communications 23(1), 174–185 (2005)

    Article  Google Scholar 

  14. Gudmundsson, J., Knauer, C.: Dilation and detours in geometric networks. In: Gonzales, T. (ed.) Handbook on Approximation Algorithms and Metaheuristics, pp. 52-1– 52-16. Chapman and Hall/CRC, Boca Raton (2006)

    Google Scholar 

  15. Keil, J.M.: Approximating the complete Euclidean graph. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  16. Narasimhan, G., Smid, M.: Approximating the stretch factor of Euclidean graphs. SIAM J. Comput. 30(3), 978–989 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, New York (2007)

    Book  MATH  Google Scholar 

  18. Peleg, D., Schäffer, A.A.: Graph spanners. Journal of Graph Theory 13(1), 99–116 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Santi, P.: Topology control in wireless ad hoc and sensor networks. ACM Computing Surveys (CSUR) 37(2), 164–194 (2005)

    Article  Google Scholar 

  20. Sharir, M., Agarwal, P.: Davenport-Schinzel Sequences and their Geometric Applications. Cambridge University Press (1995)

    Google Scholar 

  21. Steele, J.M.: Probability Theory and Combinatorial Optimization. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 69. SIAM (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alewijnse, S.P.A., Bouts, Q.W., Ten Brink, A.P. (2014). Distribution-Sensitive Construction of the Greedy Spanner. In: Schulz, A.S., Wagner, D. (eds) Algorithms - ESA 2014. ESA 2014. Lecture Notes in Computer Science, vol 8737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44777-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44777-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44776-5

  • Online ISBN: 978-3-662-44777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics