Skip to main content

Representative Sets of Product Families

  • Conference paper
Book cover Algorithms - ESA 2014 (ESA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8737))

Included in the following conference series:

Abstract

A subfamily \({\cal F}'\) of a set family \({\cal F}\) is said to q-represent \({\cal F}\) if for every \(A \in{\cal F}\) and B of size q such that A ∩ B = ∅ there exists a set \(A' \in{\cal F}'\) such that A′ ∩ B = ∅. In a recent paper [SODA 2014] three of the authors gave an algorithm that given as input a family \({\cal F}\) of sets of size p together with an integer q, efficiently computes a q-representative family \({\cal F'}\) of \({\cal F}\) of size approximately \({p+q \choose p}\), and demonstrated several applications of this algorithm. In this paper, we consider the efficient computation of q-representative sets for product families \({\cal F}\). A family \({\cal F}\) is a product family if there exist families \({\cal A}\) and \({\cal B}\) such that \({\cal F} = \{A \cup B~:~A \in{\cal A}, B \in{\cal B}, A \cap B = \emptyset\}\). Our main technical contribution is an algorithm which given \({\cal A}\), \({\cal B}\) and q computes a q-representative family \({\cal F}'\) of \({\cal F}\). The running time of our algorithm is sublinear in \(|{\cal F}|\) for many choices of \({\cal A}\), \({\cal B}\) and q which occur naturally in several dynamic programming algorithms. We also give an algorithm for the computation of q-representative sets for product families \({\cal F}\) in the more general setting where q-representation also involves independence in a matroid in addition to disjointness. This algorithm considerably outperforms the naive approach where one first computes \({\cal F}\) from \({\cal A}\) and \({\cal B}\), and then computes the q-representative family \({\cal F}'\) from \({\cal F}\).

We give two applications of our new algorithms for computing q-representative sets for product families. The first is a \(3.8408^kn^{{\mathcal{O}}(1)}\) deterministic algorithm for the Multilinear Monomial Detection (k -MlD) problem. The second is a significant improvement of deterministic dynamic programming algorithms for “connectivity problems” on graphs of bounded treewidth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. Assoc. Comput. Mach. 42(4), 844–856 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bellman, R., Karush, W.: Mathematical programming and the maximum transform. J. Soc. Indust. Appl. Math. 10, 550–567 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bellman, R., Karush, W.: On the maximum transform and semigroup of transformations. Bull. Amer. Math. Soc. 68, 516–518 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbious: Fast subset convolution. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC 2007). ACM Press, New York (2007) (page to appear)

    Google Scholar 

  5. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameterized paths and packings. CoRR, abs/1007.1161 (2010)

    Google Scholar 

  6. Björklund, A., Kaski, P., Kowalik, L.: Probably optimal graph motifs. In: STACS. LIPIcs, vol. 20, pp. 20–31 (2013)

    Google Scholar 

  7. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 196–207. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: Proceedings of the 52nd Annual Symposium on Foundations of Computer Science (FOCS 2011). IEEE (2011)

    Google Scholar 

  9. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S., Rao, B.V.R.: Faster algorithms for finding and counting subgraphs. J. Comput. System Sci. 78(3), 698–706 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative sets with applications in parameterized and exact algorithms. In: SODA, pp. 142–151 (2014)

    Google Scholar 

  11. Guillemot, S., Sikora, F.: Finding and counting vertex-colored subtrees. Algorithmica 65(4), 828–844 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Koutis, I.: Constrained multilinear detection for faster functional motif discovery. Inf. Process. Lett. 112(22), 889–892 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lovász, L.: Flats in matroids and geometric graphs. In: Combinatorial surveys (Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham), pp. 45–86. Academic Press, London (1977)

    Google Scholar 

  15. Marx, D.: Parameterized coloring problems on chordal graphs. Theor. Comput. Sci. 351(3), 407–424 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Marx, D.: A parameterized view on matroid optimization problems. Theor. Comput. Sci. 410(44), 4471–4479 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Monien, B.: How to find long paths efficiently. In: Analysis and design of algorithms for combinatorial problems, Udine, 1982. North-Holland Math. Stud., vol. 109, pp. 239–254. North-Holland, Amsterdam (1985)

    Chapter  Google Scholar 

  18. Oxley, J.G.: Matroid theory, vol. 3. Oxford University Press (2006)

    Google Scholar 

  19. Shachnai, H., Zehavi, M.: Faster computation of representative families for uniform matroids with applications. CoRR, abs/1402.3547 (2014)

    Google Scholar 

  20. Williams, R.: Finding paths of length k in O *(2k) time. Inf. Process. Lett. 109(6), 315–318 (2009)

    Article  MATH  Google Scholar 

  21. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: Proceedings of the 44th Symposium on Theory of Computing Conference (STOC 2012), pp. 887–898. ACM (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S. (2014). Representative Sets of Product Families. In: Schulz, A.S., Wagner, D. (eds) Algorithms - ESA 2014. ESA 2014. Lecture Notes in Computer Science, vol 8737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44777-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44777-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44776-5

  • Online ISBN: 978-3-662-44777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics