Skip to main content

GRASP. Extending Graph Separators for the Single-Source Shortest-Path Problem

  • Conference paper
Algorithms - ESA 2014 (ESA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8737))

Included in the following conference series:

Abstract

Many existing solutions focus on point-to-point shortest-path queries in road networks. In contrast, only few contributions address the related single-source shortest-path problem, i.e., finding shortest-path distances from a single source s to all other graph vertices. This work extends graph separator methods to handle this specific problem and its one-to-many variant, i.e., calculating the shortest path distances from a single source to a set of targets T ⊆ V. This novel family of so-called GRASP algorithms provides exceptional preprocessing times, making them suitable for dynamic travel time scenarios. GRASP algorithms also efficiently solve range / isochrone queries not handled by previous approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., Sanders, P., Wagner, D., Werneck, R.: Route planning in transportation networks. Technical Report MSR-TR-2014-4 (January 2014)

    Google Scholar 

  2. Baum, M., Dibbelt, J., Pajor, T., Wagner, D.: Energy-optimal routes for electric vehicles. In: SIGSPATIAL/GIS, pp. 54–63 (2013)

    Google Scholar 

  3. Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.F.: Phast: Hardware-accelerated shortest path trees. In: IPDPS, pp. 921–931 (2011)

    Google Scholar 

  4. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route planning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 376–387. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Delling, D., Goldberg, A.V., Werneck, R.F.F.: Faster batched shortest paths in road networks. In: ATMOS, pp. 52–63 (2011)

    Google Scholar 

  6. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Delling, D., Werneck, R.F.: Customizable point-of-interest queries in road networks. In: SIGSPATIAL/GIS, pp. 490–493 (2013)

    Google Scholar 

  8. Delling, D., Werneck, R.F.: Faster customization of road networks. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 30–42. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Demetrescu, C., Goldberg, A.V., Johnson, D.: The shortest path problem. Ninth DIMACS implementation challenge. DIMACS Book 74. AMS (2009)

    Google Scholar 

  10. Efentakis, A., Brakatsoulas, S., Grivas, N., Lamprianidis, G., Patroumpas, K., Pfoser, D.: Towards a flexible and scalable fleet management service. In: CTS@SIGSPATIAL (2013)

    Google Scholar 

  11. Efentakis, A., Grivas, N., Lamprianidis, G., Magenschab, G., Pfoser, D.: Isochrones, traffic and demographics. In: SIGSPATIAL/GIS, pp. 538–541 (2013)

    Google Scholar 

  12. Efentakis, A., Pfoser, D.: Optimizing landmark-based routing and preprocessing. In: CTS@SIGSPATIAL (2013)

    Google Scholar 

  13. Efentakis, A., Theodorakis, D., Pfoser, D.: Crowdsourcing computing resources for shortest-path computation. In: SIGSPATIAL/GIS, pp. 434–437 (2012)

    Google Scholar 

  14. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: Faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  16. Mehlhorn, K., Sanders, P.: Algorithms and Data Structures: The Basic Toolbox. Springer, Berlin (2008)

    Google Scholar 

  17. Sanders, P., Schulz, C.: Distributed evolutionary graph partitioning. In: ALENEX (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Efentakis, A., Pfoser, D. (2014). GRASP. Extending Graph Separators for the Single-Source Shortest-Path Problem. In: Schulz, A.S., Wagner, D. (eds) Algorithms - ESA 2014. ESA 2014. Lecture Notes in Computer Science, vol 8737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44777-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44777-2_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44776-5

  • Online ISBN: 978-3-662-44777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics