Skip to main content

Succinct Indices for Path Minimum, with Applications to Path Reporting

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8737))

Abstract

In the path minimum query problem, we preprocess a tree on n weighted nodes, such that given an arbitrary path, we can locate the node with the smallest weight along this path. We design novel succinct indices for this problem; one of our index structures supports queries in O(α(m,n)) time, and occupies O(m) bits of space in addition to the space required for the input tree, where m is an integer greater than or equal to n and α(m,n) is the inverse-Ackermann function. These indices give us the first succinct data structures for the path minimum problem, and allow us to obtain new data structures for path reporting queries, which report the nodes along a query path whose weights are within a query range. We achieve three different time/space tradeoffs for path reporting by designing (a) an O(n)-word structure with \(O(\lg^\epsilon n + occ \cdot \lg^\epsilon n)\) query time, where occ is the number of nodes reported; (b) an \(O(n\lg\lg n)\)-word structure with \(O(\lg\lg n + occ \cdot \lg\lg n)\) query time; and (c) an \(O( n \lg^\epsilon n)\)-word structure with \(O(\lg\lg n + occ)\) query time. These tradeoffs match the state of the art of two-dimensional orthogonal range reporting queries [8] which can be treated as a special case of path reporting queries. When the number of distinct weights is much smaller than n, we further improve both the query time and the space cost of these three results.

This work was supported by NSERC and the Canada Research Chairs Program. Part of the first author’s work was done during his visit to the Department of Computer Science and Engineering, Hong Kong University of Science and Technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Schieber, B.: Optimal preprocessing for answering on-line product queries. Tech. rep., Tel Aviv University (1987)

    Google Scholar 

  2. Alstrup, S., Holm, J.: Improved algorithms for finding level ancestors in dynamic trees. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 73–84. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Barbay, J., He, M., Munro, J.I., Satti, S.R.: Succinct indexes for strings, binary relations and multilabeled trees. ACM Transactions on Algorithms 7(4), 52 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci. 337(1-3), 217–239 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bringmann, K., Larsen, K.G.: Succinct sampling from discrete distributions. In: STOC, pp. 775–782 (2013)

    Google Scholar 

  6. Brodal, G.S., Davoodi, P., Srinivasa Rao, S.: Path minima queries in dynamic weighted trees. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 290–301. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range minimum data structures. Algorithmica 63(4), 815–830 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chan, T.M., Larsen, K.G., Pǎtraşcu, M.: Orthogonal range searching on the RAM, revisited. In: Symposium on Computational Geometry, pp. 1–10 (2011)

    Google Scholar 

  9. Chazelle, B.: Computing on a free tree via complexity-preserving mappings. Algorithmica 2, 337–361 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press (2009)

    Google Scholar 

  11. Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range minimum queries. Algorithmica 68(3), 610–625 (2014)

    Article  MathSciNet  Google Scholar 

  12. Demaine, E.D., López-Ortiz, A.: A linear lower bound on index size for text retrieval. J. Algorithms 48(1), 2–15 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Farzan, A., Munro, J.I.: A uniform paradigm to succinctly encode various families of trees. Algorithmica 68(1), 16–40 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Frederickson, G.N.: Data structures for on-line updating of minimum spanning trees, with applications. SIAM J. Comput. 14(4), 781–798 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Geary, R.F., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor queries. ACM Transactions on Algorithms 2(4), 510–534 (2006)

    Article  MathSciNet  Google Scholar 

  17. Golynski, A.: Optimal lower bounds for rank and select indexes. Theor. Comput. Sci. 387(3), 348–359 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2), 338–355 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  19. He, M., Munro, J.I., Satti, S.R.: Succinct ordinal trees based on tree covering. ACM Transactions on Algorithms 8(4), 42 (2012)

    Article  MathSciNet  Google Scholar 

  20. He, M., Munro, J.I., Zhou, G.: Path queries in weighted trees. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 140–149. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. He, M., Munro, J.I., Zhou, G.: A framework for succinct labeled ordinal trees over large alphabets. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 537–547. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. He, M., Munro, J.I., Zhou, G.: Succinct data structures for path queries. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 575–586. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Kaplan, H., Shafrir, N.: Path minima in incremental unrooted trees. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 565–576. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. King, V.: A simpler minimum spanning tree verification algorithm. Algorithmica 18(2), 263–270 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Krizanc, D., Morin, P., Smid, M.H.M.: Range mode and range median queries on lists and trees. Nord. J. Comput. 12(1), 1–17 (2005)

    MATH  MathSciNet  Google Scholar 

  26. Miltersen, P.B.: Lower bounds on the size of selection and rank indexes. In: SODA, pp. 11–12 (2005)

    Google Scholar 

  27. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static trees. SIAM J. Comput. 31(3), 762–776 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Patil, M., Shah, R., Thankachan, S.V.: Succinct representations of weighted trees supporting path queries. J. Discrete Algorithms 17, 103–108 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Pettie, S.: An inverse-ackermann type lower bound for online minimum spanning tree verification. Combinatorica 26(2), 207–230 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms 3(4) (2007)

    Google Scholar 

  31. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3), 362–391 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chan, T.M., He, M., Munro, J.I., Zhou, G. (2014). Succinct Indices for Path Minimum, with Applications to Path Reporting. In: Schulz, A.S., Wagner, D. (eds) Algorithms - ESA 2014. ESA 2014. Lecture Notes in Computer Science, vol 8737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44777-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44777-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44776-5

  • Online ISBN: 978-3-662-44777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics