Skip to main content

Nearly Tight Approximability Results for Minimum Biclique Cover and Partition

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8737))

Abstract

In this paper, we consider the minimum biclique cover and minimum biclique partition problems on bipartite graphs. In the minimum biclique cover problem, we are given an input bipartite graph G = (V,E), and our goal is to compute the minimum number of complete bipartite subgraphs that cover all edges of G. This problem, besides its correspondence to a well-studied notion of bipartite dimension in graph theory, has applications in many other research areas such as artificial intelligence, computer security, automata theory, and biology. Since it is NP-hard, past research has focused on approximation algorithms, fixed parameter tractability, and special graph classes that admit polynomial time exact algorithms. For the minimum biclique partition problem, we are interested in a biclique cover that covers each edge exactly once.

We revisit the problems from approximation algorithms’ perspectives and give nearly tight lower and upper bound results. We first show that both problems are NP-hard to approximate to within a factor of n 1 − ε (where n is the number of vertices in the input graph). Using a stronger complexity assumption, the hardness becomes \(\tilde \Omega(n)\), where \(\tilde \Omega(\cdot)\) hides lower order terms. Then we show that approximation factors of the form n/(logn)γ for some γ > 0 can be obtained.

Our hardness results have many consequences: (i) \(\tilde \Omega(n)\) hardnesses for computing the Boolean rank and non-negative integer rank of an n-by-n matrix (ii) \(\tilde \Omega(n)\) hardness for minimizing the number of states in a deterministic finite automaton (DFA), given an n-state DFA as input, and (iii) \(\tilde \Omega(\sqrt{n})\) hardness for computing minimum NFA from a truth table of size n. These results settle some of the most basic problems in the area of regular language optimization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambühl, C., Mastrolilli, M., Svensson, O.: Inapproximability results for maximum edge biclique, minimum linear arrangement, and sparsest cut. SIAM J. Comput. 40(2), 567–596 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amilhastre, J., Janssen, P., Vilarem, M.-C.: FA minimisation heuristics for a class of finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214, pp. 1–12. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Amilhastre, J., Vilarem, M., Janssen, P.: Complexity of minimum biclique cover and minimum biclique decomposition for bipartite domino-free graphs. Discrete Applied Mathematics 86(2-3), 125–144 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Book  MATH  Google Scholar 

  5. Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Graph products revisited: Tight approximation hardness of induced matching, poset dimension and more. In: Khanna, S. (ed.) SODA, pp. 1557–1576. SIAM (2013)

    Google Scholar 

  6. Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Independent set, induced matching, and pricing: Connections and tight (subexponential time) approximation hardnesses. In: FOCS, pp. 370–379. IEEE Computer Society (2013)

    Google Scholar 

  7. Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Coloring graph powers: Graph product bounds and hardness of approximation. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 409–420. Springer, Heidelberg (2014)

    Google Scholar 

  8. Ene, A., Horne, W., Milosavljevic, N., Rao, P., Schreiber, R., Tarjan, R.E.: Fast exact and heuristic methods for role minimization problems. In: SACMAT 2008, pp. 1–10. ACM, New York (2008)

    Google Scholar 

  9. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. Algorithmica 47(4), 439–452 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feige, U.: Relations between average case complexity and approximation complexity. In: Reif, J.H. (ed.) STOC, pp. 534–543. ACM (2002)

    Google Scholar 

  11. Feige, U.: Approximating maximum clique by removing subgraphs. SIAM Journal on Discrete Mathematics 18(2), 219–225 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. Journal of Computer and System Sciences 57, 187–199 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gramlich, G., Schnitger, G.: Minimizing NFA’s and regular expressions. J. Comput. Syst. Sci. 73(6), 908–923 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gregory, D.A., Pullman, N.J., Jones, K.F., Lundgren, J.R.: Biclique coverings of regular bigraphs and minimum semiring ranks of regular matrices. J. Comb. Theory, Ser. B 51(1), 73–89 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gruber, H., Holzer, M.: Inapproximability of nondeterministic state and transition complexity assuming P ≠ NP. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 205–216. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Halldórsson, M.M.: A still better performance guarantee for approximate graph coloring. Information Processing Letters 45(1), 19–23 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata–a survey. Information and Computation 209(3), 456–470 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. In: Albert, J.L., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 629–640. Springer, Heidelberg (1991)

    Google Scholar 

  19. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences 9(3), 256–278 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  20. Khot, S., Ponnuswami, A.K.: Better inapproximability results for maxclique, chromatic number and min-3lin-deletion. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 226–237. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Milind Dawande, P.K., Tayur, S.: On the biclique problem in bipartite graphs. GSIA Working Paper, Carnegie Mellon University, Pittsburgh (1996)

    Google Scholar 

  22. Müller, H.: Alternating cycle-free matchings. Order 7(1), 11–21 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Müller, H.: On edge perfectness and classes of bipartite graphs. Discrete Mathematics 149(1-3), 159–187 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nau, D.S., Markowsky, G., Woodbury, M.A., Amos, D.B.: A mathematical analysis of human leukocyte antigen serology. Mathematical Biosciences 40(3-4), 243–270 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nor, I., Hermelin, D., Charlat, S., Engelstadter, J., Reuter, M., Duron, O., Sagot, M.-F.: Mod/Resc parsimony inference: Theory and application. Inf. Comput. 213, 23–32 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Orlin, J.: Contentment in graph theory: Covering graphs with cliques. Indagationes Mathematicae (Proceedings) 80(5), 406–424 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  27. Peeters, R.: The maximum edge biclique problem is NP-complete. Discrete Applied Mathematics 131(3), 651–654 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Simon, H.: On approximate solutions for combinatorial optimization problems. SIAM Journal on Discrete Mathematics 3(2), 294–310 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC 2006, pp. 681–690. ACM, New York (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chalermsook, P., Heydrich, S., Holm, E., Karrenbauer, A. (2014). Nearly Tight Approximability Results for Minimum Biclique Cover and Partition. In: Schulz, A.S., Wagner, D. (eds) Algorithms - ESA 2014. ESA 2014. Lecture Notes in Computer Science, vol 8737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44777-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44777-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44776-5

  • Online ISBN: 978-3-662-44777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics