Skip to main content

Polynomial Decompositions in Polynomial Time

  • Conference paper
Algorithms - ESA 2014 (ESA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8737))

Included in the following conference series:

Abstract

Fix a prime p. Given a positive integer k, a vector of positive integers Δ = (Δ1, Δ2, …, Δ k ) and a function \(\Gamma: \mathbb{F}_p^k \to \mathbb{F}_p\), we say that a function \(P: \mathbb{F}_p^n \to \mathbb{F}_p\) is (k,Δ,Γ)-structured if there exist polynomials \(P_1, P_2, \dots, P_k:\mathbb{F}_p^n \to \mathbb{F}_p\) with each deg(P i ) ≤ Δ i such that for all \(x \in \mathbb{F}_p^n\),

$$P(x) = \Gamma(P_1(x), P_2(x), ..., P_k(x)).$$

For instance, an n-variate polynomial over the field \(\mathbb{F}_p\) of total degree d factors nontrivially exactly when it is (2, (d-1,d-1), prod)-structured where prod(a,b) = a·b.

We show that if p > d, then for any fixed k, Δ, Γ, we can decide whether a given polynomial P(x 1, x 2, …, x n ) of degree d is (k, Δ, Γ)-structured and if so, find a witnessing decomposition. The algorithm takes poly(n) time. Our approach is based on higher-order Fourier analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Duke, R.A., Lefmann, H., Rödl, V., Yuster, R.: The algorithmic aspects of the regularity lemma. J. Algorithms 16(1), 80–109 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bhattacharyya, A., Chen, V., Sudan, M., Xie, N.: Testing linear-invariant non-linear properties. Theory Comput 7(1), 75–99 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bhattacharyya, A., Fischer, E., Hatami, H., Hatami, P., Lovett, S.: Every locally characterized affine-invariant property is testable. In: Proc. 45th Annual ACM Symposium on the Theory of Computing, pp. 429–436 (2013)

    Google Scholar 

  4. Bhattacharyya, A., Fischer, E., Lovett, S.: Testing low complexity affine-invariant properties. In: Proc. 24th ACM-SIAM Symposium on Discrete Algorithms, pp. 1337–1355 (2013), http://arxiv.org/abs/1201.0330v2

  5. Bhattacharyya, A., Grigorescu, E., Shapira, A.: A unified framework for testing linear-invariant properties. In: Proc. 51st Annual IEEE Symposium on Foundations of Computer Science, pp. 478–487 (2010)

    Google Scholar 

  6. Bhattacharyya, A.: Polynomial decompositions in polynomial time. Technical report (February 2014), http://eccc.hpi-web.de/report/2014/018/

  7. Bhattacharyya, A., Hatami, P., Tulsiani, M.: Algorithmic regularity for polynomials and applications. Technical report (November 2013), http://arxiv.org/abs/1311.5090

  8. Diakonikolas, I., Lee, H.K., Matulef, K., Onak, K., Rubinfeld, R., Servedio, R.A., Wan, A.: Testing for concise representations. In: Proc. 48th Annual IEEE Symposium on Foundations of Computer Science, pp. 549–558 (2007)

    Google Scholar 

  9. de Wolf, R.: A Brief Introduction to Fourier Analysis on the Boolean Cube. Graduate Surveys, vol. 1. Theory of Computing Library (2008)

    Google Scholar 

  10. Gowers, W.T.: A new proof of Szeméredi’s theorem for arithmetic progressions of length four. Geom. Funct. Anal. 8(3), 529–551 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gowers, W.T.: A new proof of Szeméredi’s theorem. Geom. Funct. Anal. 11(3), 465–588 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Green, B., Tao, T.: An inverse theorem for the Gowers U 3-norm. Proc. Edin. Math. Soc. 51, 73–153 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Green, B., Tao, T.: The distribution of polynomials over finite fields, with applications to the Gowers norms. Contrib. Discrete Math. 4(2) (2009)

    Google Scholar 

  14. Green, B., Tao, T.: Linear equations in primes. Ann. of Math. 171, 1753–1850 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Green, B., Tao, T., Ziegler, T.: An inverse theorem for the Gowers U s + 1-norm. In: Ann. of Math. (to appear)

    Google Scholar 

  16. Green, B., Tao, T., Ziegler, T.: An inverse theorem for the Gowers U 4-norm. Glasgow Math. J. 53(1), 1–50 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Host, B., Kra, B.: Nonconventional ergodic averages and nilmanifolds. Ann. of Math. 161(1), 397–488 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kaltofen, E.: Effective Noether irreducibility forms and applications. J. Comp. Sys. Sci. 50(2), 274–295 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kaufman, T., Lovett, S.: Worst case to average case reductions for polynomials. In: Proc. 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 166–175 (2008)

    Google Scholar 

  20. Karnin, Z.S., Shpilka, A.: Reconstruction of generalized depth-3 arithmetic circuits with bounded top fan-in. In: Proc. 24th Annual IEEE Conference on Computational Complexity, pp. 274–285 (2009)

    Google Scholar 

  21. Kopparty, S., Saraf, S., Shpilka, A.: Equivalence of polynomial identity testing and deterministic multivariate polynomial factorization. Technical Report 001, Electronic Colloquium on Computational Complexity (January 2014), http://eccc.hpi-web.de/report/2014/001/

  22. Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and applications. SIAM J. on Comput. (4), 838–856 (1993), Earlier version in STOC 1990

    Google Scholar 

  23. Szemerédi, E.: Regular partitions of graphs. In: Bremond, J.C., Fournier, J.C., Las Vergnas, M., Sotteau, D. (eds.) Proc. Colloque Internationaux CNRS 260 – Problèmes Combinatoires et Théorie des Graphes, pp. 399–401 (1978)

    Google Scholar 

  24. Tao, T.: Higher Order Fourier Analysis. Graduate Studies in Mathematics, vol. 142. American Mathematical Society (2012)

    Google Scholar 

  25. Tao, T., Ziegler, T.: The inverse conjecture for the Gowers norm over finite fields via the correspondence principle. Analysis & PDE 3(1), 1–20 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tao, T., Ziegler, T.: The inverse conjecture for the Gowers norm over finite fields in low characteristic. Ann. Comb. 16(1), 121–188 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Viola, E.: The sum of D small-bias generators fools polynomials of degree D. Computational Complexity 18(2), 209–217 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Viola, E., Wigderson, A.: Norms, XOR lemmas, and lower bounds for polynomials and protocols. Theory Comput 4(7), 137–168 (2008)

    Article  MathSciNet  Google Scholar 

  29. von zur Gathen, J., Kaltofen, E.: Factorization of multivariate polynomials over finite fields. Mathematics of Computation 45(171), 251–261 (1985)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bhattacharyya, A. (2014). Polynomial Decompositions in Polynomial Time. In: Schulz, A.S., Wagner, D. (eds) Algorithms - ESA 2014. ESA 2014. Lecture Notes in Computer Science, vol 8737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44777-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44777-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44776-5

  • Online ISBN: 978-3-662-44777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics