Skip to main content

Toward Practical Homomorphic Evaluation of Block Ciphers Using Prince

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8438))

Included in the following conference series:

Abstract

We present the homomorphic evaluation of the Prince block cipher. Our leveled implementation is based on a generalization of NTRU. We are motivated by the drastic bandwidth savings that may be achieved by scheme conversion. To unlock this advantage we turn to lightweight ciphers such as Prince. These ciphers were designed from scratch to yield fast and compact implementations on resource-constrained embedded platforms. We show that some of these ciphers have the potential to enable near practical homomorphic evaluation of block ciphers. Indeed, our analysis shows that Prince can be implemented using only a 24 level deep circuit. Using an NTRU based implementation we achieve an evaluation time of 3.3 s per Prince block – one and two orders of magnitude improvement over homomorphic AES implementations achieved using NTRU, and BGV-style homomorphic encryption libraries, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. In: Foundations of Secure Computation (1978)

    Google Scholar 

  2. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on the Theory of Computing (STOC), pp. 169–178 (2009)

    Google Scholar 

  3. Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. thesis, Department of Computer Science, Stanford University (2009)

    Google Scholar 

  4. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. Manuscript (2011)

    Google Scholar 

  7. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations (2011). http://eprint.iacr.org/2011/133

  8. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping. In: Innovations in Theoretical Computer Science, ITCS, pp. 309–325 (2012)

    Google Scholar 

  10. Alt-López, A., Tromer E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the 44th STOC, pp. 1219–1234. ACM (2012)

    Google Scholar 

  11. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 45–64. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Coron, J.-S., Naccache, D., Tibouchi, M.: Public key compression and modulus switching for fully homomorphic encryption over the integers. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Doröz, Y., Hu, Y., Sunar, B.: Homomorphic AES Evaluation using NTRU, IACR ePrint Archive. Technical report 2014/039 January 2014. http://eprint.iacr.org/2014/039.pdf

  16. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), IEEE (2011)

    Google Scholar 

  17. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be practical?. In: Proceedings of the 3rd ACM CCSW (Cloud Computing Security Workshop), ACM (2011)

    Google Scholar 

  18. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eisenbarth, T., Gong, Z., Güneysu, T., Heyse, S., Indesteege, S., Kerckhof, S., Koeune, F., Nad, T., Plos, T., Regazzoni, F., Standaert, F.-X., van Oldeneel tot Oldenzeel, L.: Compact implementation and performance evaluation of block ciphers in ATtiny devices. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 172–187. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçın, T.: PRINCE – A low-latency block cipher for pervasive computing applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Eisenbarth, T., Paar, C., Poschmann, A., Kumar, S., Uhsadel, L.: A Survey of lightweight-cryptography implementations. IEEE Des. Test Comput. 24(6), 522–533 (2007)

    Article  Google Scholar 

  23. Daemen, J., Rijmen, V.: The design of Rijndael: AES-the advanced encryption standard. Information Security and Cryptography, vol. XVII, pp. 1–238. Springer, Heidelberg (2002)

    Google Scholar 

  24. Hong, D., Sung, J., Hong, S.H., Lim, J.-I., Lee, S.-J., Koo, B.-S., Lee, C.-H., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J.-S., Chee, S.: HIGHT: a new block cipher suitable for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: SEA: a scalable encryption algorithm for small embedded applications. In: Domingo-Ferrer, J., Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  27. Canniere, C.D., Dunkelman, O., Knezevic, M.: The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive, Report 2013/404 (2013). http://eprint.iacr.org/

Download references

Acknowledgments

Funding for this research was in part provided by the US National Science Foundation CNS Awards #1117590, #1319130, and #1261399.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yarkın Doröz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 IFCA/Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doröz, Y., Shahverdi, A., Eisenbarth, T., Sunar, B. (2014). Toward Practical Homomorphic Evaluation of Block Ciphers Using Prince. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds) Financial Cryptography and Data Security. FC 2014. Lecture Notes in Computer Science(), vol 8438. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44774-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44774-1_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44773-4

  • Online ISBN: 978-3-662-44774-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics