Skip to main content

Multiple Mass Spectrometry Fragmentation Trees Revisited: Boosting Performance and Quality

  • Conference paper
Algorithms in Bioinformatics (WABI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8701))

Included in the following conference series:

Abstract

Mass spectrometry (MS) in combination with a fragmentation technique is the method of choice for analyzing small molecules in high throughput experiments. The automated interpretation of such data is highly non-trivial. Recently, fragmentation trees have been introduced for de novo analysis of tandem fragmentation spectra (MS2), describing the fragmentation process of the molecule. Multiple-stage MS (MSn) reveals additional information about the dependencies between fragments. Unfortunately, the computational analysis of MSn data using fragmentation trees turns out to be more challenging than for tandem mass spectra.

We present an Integer Linear Program for solving the Combined Colorful Subtree problem, which is orders of magnitude faster than the currently best algorithm which is based on dynamic programming. Using the new algorithm, we show that correlation between structural similarity and fragmentation tree similarity increases when using the additional information gained from MSn. Thus, we show for the first time that using MSn data can improve the quality of fragmentation trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, F., Wilson, M., Pon, A., Greiner, R., Wishart, D.: CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic. Acids Res. (2014)

    Google Scholar 

  2. Böcker, S., Briesemeister, S., Klau, G.W.: On optimal comparability editing with applications to molecular diagnostics. BMC Bioinformatics 10(suppl. 1), S61 (2009); Proc. of Asia-Pacific Bioinformatics Conference (APBC 2009)

    Google Scholar 

  3. Böcker, S., Lipták, Z.: Efficient mass decomposition. In: Proc. of ACM Symposium on Applied Computing (ACM SAC 2005), pp. 151–157. ACM Press, New York (2005)

    Google Scholar 

  4. Böcker, S., Lipták, Z.: A fast and simple algorithm for the Money Changing Problem. Algorithmica 48(4), 413–432 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Böcker, S., Rasche, F.: Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinformatics 24, I49–I55 (2008); Proc. of European Conference on Computational Biology (ECCB 2008)

    Google Scholar 

  6. Dondi, R., Fertin, G., Vialette, S.: Complexity issues in vertex-colored graph pattern matching. J. Discrete Algorithms 9(1), 82–99 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195–207 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fellows, M.R., Gramm, J., Niedermeier, R.: On the parameterized intractability of motif search problems. Combinatorica 26(2), 141–167 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gerlich, M., Neumann, S.: MetFusion: integration of compound identification strategies. J. Mass Spectrom 48(3), 291–298 (2013)

    Article  Google Scholar 

  10. Heinonen, M., Shen, H., Zamboni, N., Rousu, J.: Metabolite identification and molecular fingerprint prediction via machine learning. Bioinformatics 28(18), 2333–2341 (2012); Proc. of European Conference on Computational Biology (ECCB 2012)

    Google Scholar 

  11. Hill, D.W., Kertesz, T.M., Fontaine, D., Friedman, R., Grant, D.F.: Mass spectral metabonomics beyond elemental formula: Chemical database querying by matching experimental with computational fragmentation spectra. Anal. Chem. 80(14), 5574–5582 (2008)

    Article  Google Scholar 

  12. Hufsky, F., Dührkop, K., Rasche, F., Chimani, M., Böcker, S.: Fast alignment of fragmentation trees. Bioinformatics 28, i265–i273 (2012); Proc. of Intelligent Systems for Molecular Biology (ISMB 2012)

    Google Scholar 

  13. Leach, A.R., Gillet, V.J.: An Introduction to Chemoinformatics. Springer, Berlin (2005)

    Google Scholar 

  14. Li, J.W.-H., Vederas, J.C.: Drug discovery and natural products: End of an era or an endless frontier? Science 325(5937), 161–165 (2009)

    Article  Google Scholar 

  15. Ljubić, I., Weiskircher, R., Pferschy, U., Klau, G.W., Mutzel, P., Fischetti, M.: Solving the prize-collecting Steiner tree problem to optimality. In: Proc. of Algorithm Engineering and Experiments (ALENEX 2005), pp. 68–76. SIAM (2005)

    Google Scholar 

  16. Oberacher, H., Pavlic, M., Libiseller, K., Schubert, B., Sulyok, M., Schuhmacher, R., Csaszar, E., Köfeler, H.C.: On the inter-instrument and inter-laboratory transferability of a tandem mass spectral reference library: 1. Results of an Austrian multicenter study. J. Mass Spectrom. 44(4), 485–493 (2009)

    Article  Google Scholar 

  17. Patti, G.J., Yanes, O., Siuzdak, G.: Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13(4), 263–269 (2012)

    Article  Google Scholar 

  18. Rasche, F., Scheubert, K., Hufsky, F., Zichner, T., Kai, M., Svatoš, A., Böcker, S.: Identifying the unknowns by aligning fragmentation trees. Anal. Chem. 84(7), 3417–3426 (2012)

    Article  Google Scholar 

  19. Rasche, F., Svatoš, A., Maddula, R.K., Böttcher, C., Böcker, S.: Computing fragmentation trees from tandem mass spectrometry data. Anal. Chem. 83(4), 1243–1251 (2011)

    Article  Google Scholar 

  20. Rauf, I., Rasche, F., Nicolas, F., Böcker, S.: Finding maximum colorful subtrees in practice. In: Chor, B. (ed.) RECOMB 2012. LNCS, vol. 7262, pp. 213–223. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Rogers, D.J., Tanimoto, T.T.: A computer program for classifying plants. Science 132(3434), 1115–1118 (1960)

    Article  Google Scholar 

  22. Rojas-Chertó, M., Kasper, P.T., Willighagen, E.L., Vreeken, R.J., Hankemeier, T., Reijmers, T.H.: Elemental composition determination based on MSn. Bioinformatics 27, 2376–2383 (2011)

    Article  Google Scholar 

  23. Scheubert, K., Hufsky, F., Rasche, F., Böcker, S.: Computing fragmentation trees from metabolite multiple mass spectrometry data. In: Bafna, V., Sahinalp, S.C. (eds.) RECOMB 2011. LNCS, vol. 6577, pp. 377–391. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  24. Scheubert, K., Hufsky, F., Rasche, F., Böcker, S.: Computing fragmentation trees from metabolite multiple mass spectrometry data. J. Comput. Biol. 18(11), 1383–1397 (2011)

    Article  MathSciNet  Google Scholar 

  25. Sheldon, M.T., Mistrik, R., Croley, T.R.: Determination of ion structures in structurally related compounds using precursor ion fingerprinting. J. Am. Soc. Mass. Spectrom 20(3), 370–376 (2009)

    Article  Google Scholar 

  26. Shen, H., Dührkop, K., Böcker, S., Rousu, J.: Metabolite identification through multiple kernel learning on fragmentation trees. Bioinformatics (2014) Accepted Proc. of Intelligent Systems for Molecular Biology (ISMB 2014)

    Google Scholar 

  27. Sikora, F.: Aspects algorithmiques de la comparaison d’éléments biologiques. PhD thesis, Université Paris-Est (2011)

    Google Scholar 

  28. Steinbeck, C., Hoppe, C., Kuhn, S., Floris, M., Guha, R., Willighagen, E.L.: Recent developments of the Chemistry Development Kit (CDK) - an open-source Java library for chemo- and bioinformatics. Curr. Pharm. Des. 12(17), 2111–2120 (2006)

    Article  Google Scholar 

  29. Wang, Y., Xiao, J., Suzek, T.O., Zhang, J., Wang, J., Bryant, S.H.: PubChem: A public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 37(Web Server issue), W623–W633 (2009)

    Google Scholar 

  30. White, W.T.J., Beyer, S., Dührkop, K., Chimani, M., Böcker, S.: Speedy colorful subtrees. Submitted to European Conference on Computational Biology, ECCB 2014 (2014)

    Google Scholar 

  31. Wolf, S., Schmidt, S., Müller-Hannemann, M., Neumann, S.: In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 11, 148 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scheubert, K., Hufsky, F., Böcker, S. (2014). Multiple Mass Spectrometry Fragmentation Trees Revisited: Boosting Performance and Quality. In: Brown, D., Morgenstern, B. (eds) Algorithms in Bioinformatics. WABI 2014. Lecture Notes in Computer Science(), vol 8701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44753-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44753-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44752-9

  • Online ISBN: 978-3-662-44753-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics