Skip to main content

Entropic Profiles, Maximal Motifs and the Discovery of Significant Repetitions in Genomic Sequences

  • Conference paper
Algorithms in Bioinformatics (WABI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8701))

Included in the following conference series:

Abstract

The degree of predictability of a sequence can be measured by its entropy and it is closely related to its repetitiveness and compressibility. Entropic profiles are useful tools to study the under- and over-representation of subsequences, providing also information about the scale of each conserved DNA region. On the other hand, compact classes of repetitive motifs, such as maximal motifs, have been proved to be useful for the identification of significant repetitions and for the compression of biological sequences. In this paper we show that there is a relationship between entropic profiles and maximal motifs, and in particular we prove that the former are a subset of the latter. As a further contribution we propose a novel linear time linear space algorithm to compute the function Entropic Profile introduced by Vinga and Almeida in [18], and we present some preliminary results on real data, showing the speed up of our approach with respect to other existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced suffix arrays. Journal of Discrete Algorithms 2, 53–86 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Allali, A., Sagot, M.-F.: The at most k deep factor tree. Technical Report (2004)

    Google Scholar 

  3. Apostolico, A., Parida, L.: Incremental paradigms of motif discovery. Journal of Computational Biology 11, 1 (2004)

    Article  Google Scholar 

  4. Apostolico, A., Pizzi, C., Ukkonen, E.: Efficient algorithms for the discovery of gapped factors. Algorithms for Molecular Biology 6, 5 (2011)

    Article  Google Scholar 

  5. Comin, M., Antonello, M.: Fast Computation of Entropic Profiles for the Detection of Conservation in Genomes. In: Ngom, A., Formenti, E., Hao, J.-K., Zhao, X.-M., van Laarhoven, T. (eds.) PRIB 2013. LNCS, vol. 7986, pp. 277–288. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Federico, M., Pisanti, N.: Suffix tree characterization of maximal motifs in biological sequences. Theoretical Computer Science 410(43), 4391–4401 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fernandes, F., Freitas, A.T., Vinga, S.: Detection of conserved regions in genomes using entropic profiles. INESC-ID Tec. Rep. 33/2007

    Google Scholar 

  8. Fernandes, F., Freitas, A.T., Almeida, J.S., Vinga, S.: Entropic Profiler – detection of conservation in genomes using information theory. BMC Research Notes 2, 72 (2009)

    Article  Google Scholar 

  9. Herzel, H., Ebeling, W., Schmitt, A.O.: Entropies of biosequences: The role of repeats. Physical Review E 50, 5061–5071 (1994)

    Article  Google Scholar 

  10. Grossi, R., Pietracaprina, A., Pisanti, N., Pucci, G., Upfal, E., Vandin, F.: MADMX: a strategy for maximal dense motif extraction. Journal of Computational Biology 18(4), 535–545 (2011)

    Article  MathSciNet  Google Scholar 

  11. Grossi, R., Pisanti, N., Crochemore, M., Sagot, M.-F.: Bases of motifs for generating repeated patterns with wild cards. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2(1), 40–50 (2005)

    Article  Google Scholar 

  12. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press (1997)

    Google Scholar 

  13. Na, J.C., Apostolico, A., Iliopulos, C.S., Park, K.: Truncated suffix trees and their application to data compression. Theoretical Computer Science 304(1-3), 87–101 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Parida, L.: Pattern Discovery in Bioinformatics: Theory & Algorithms. Chapman & Hall/CRC (2007)

    Google Scholar 

  15. Parida, L., Pizzi, C., Rombo, S.E.: Characterization and Extraction of Irredundant Tandem Motifs. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 385–397. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Parida, L., Pizzi, C., Rombo, S.E.: Irredundant tandem motifs. Theoretical Computer Science 525, 89–102 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rombo, S.E.: Extracting string motif bases for quorum higher than two. Theoretical Computer Science 460, 94–103 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Vinga, S., Almeida, J.S.: Local Renyi entropic profiles of DNA sequences. BMC Bioinformatics 8, 393 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parida, L., Pizzi, C., Rombo, S.E. (2014). Entropic Profiles, Maximal Motifs and the Discovery of Significant Repetitions in Genomic Sequences. In: Brown, D., Morgenstern, B. (eds) Algorithms in Bioinformatics. WABI 2014. Lecture Notes in Computer Science(), vol 8701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44753-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44753-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44752-9

  • Online ISBN: 978-3-662-44753-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics