Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Warm Mix Asphalt (WMA) technologies have potential to reduce the application temperature of Hot Mix Asphalt (HMA) and improve workability without compromising the performance of asphalt pavement. This promises various benefits, e.g. a reduction in greenhouse gas emissions, decreased energy consumption and costs, improved working conditions, better compaction, extended paving season, higher reclaimed asphalt content, earlier opening to traffic, etc. These benefits as well as the potential concerns are discussed in this chapter. Mix design considerations and possible specializations of WMA technologies are summarized. Different WMA production technologies are reviewed with an emphasis on practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aschenbrener, T. (1995). Evaluation of Hamburg wheel -tracking device to predict moisture damage in hot mix asphalt. Transport Research Record, 1492, 36–45. (Washington D.C.).

    Google Scholar 

  • Bonaquist, R. (2011a). Mix design practices for warm mix asphalt. NCHRP Report 691, Washington, D.C.

    Google Scholar 

  • Bonaquist, R. (2011b) Mix design practices for warm mix asphalt. In: Second International Warm Mix Conference, NCHRP 9-43, St. Louis, MO.

    Google Scholar 

  • Brown, R. (2011a). Status of implementation. http://www.warmmixasphalt.com/submissions/149_20121112_6%20Status%20of%20Implementation-Workshop.pdf. Cited 23 Mar 2013.

  • Brown, R. (2011b). Performance of warm mix asphalt. http://www.warmmixasphalt.com/submissions/148_20121112_5%20Performance%20of%20WMA,%20Atlanta%20WMA%20Workshop.pdf. Cited 3 Mar 2013.

  • Capitao, S. D., Picado-Santos, L. G., Matinho, F. (2012). Pavement engineering materials: Review on the use of warm-mix asphalt. Construction and Building Materials, 36, 1016–1024. http://dx.doi.org/10.1016/j.conbuildmat.2012.06.038.

  • Carbon trust. (2010). Guide to the asphalt sector. In: Industrial energy efficiency accelerator. London, UK.

    Google Scholar 

  • Chowdhury, A., & Button, J. (2008). A review of warm mix asphalt. Springfield, VA: Texas Transportation Institute.

    Google Scholar 

  • D’Angelo, J., Harm, E., Bartoszek, J., et al. (2008). Warm-mix asphalt: European practice, FHWA-PL-08-007, Washington, DC.

    Google Scholar 

  • Diefenderfer, S. D., Hearon, A. J. (2010). Performance of Virginia’s warm-mix asphalt trial sections, FHWA/VTRC 10-R17, Charlottesville, VA.

    Google Scholar 

  • Drüschner, L. (2009). Experience with warm mix asphalt in Germany. NVF-rapporter, Sønderborg, Denmark.

    Google Scholar 

  • EAPA. (2013). Asphalt in figures. Brussels: European Asphalt Pavement Association. http://www.eapa.org/userfiles/2/Asphalt%20in%20Figures/Asphalt%20in%20figures%2022-11-2013.pdf.

  • EAPA. (2010). The use of warm mix asphalt. Brussels: European Asphalt Pavement Association—position paper.

    Google Scholar 

  • FHWA. (2012). Warm mix aspaht FAQs. http://www.fhwa.dot.gov/everydaycounts/technology/asphalt/faqs.cfm#tab2 Cited 3 Oct 2013.

  • Frank, B., Prowell, B. D., Hurley, G. C., West, R. C. (2011). Warm mix asphalt (WMA) emission reductions and energy savings. In: 2nd International Warm-Mix Conference, St.Louis, MO.

    Google Scholar 

  • Gandhi, T. (2008). Effects of warm asphalt additives on asphalt binder and mixture properties. Doctor dissertation thesis. Clemson University, Clemson, SC.

    Google Scholar 

  • Hansen, K. R., Copeland, A. (2013). Annual asphalt pavement industry survey on recycled materials and warm-mix asphalt usage: 2009–2012. National Center for Asphalt Technology. Information series 138. Lanham, MD.

    Google Scholar 

  • Harder, G. A. (2008). LEA half-warm mix paving report, 2007 Projects for NYSDOT. Cortland, NY: McConnaughay Technologies.

    Google Scholar 

  • Hurley, G., & Prowell, B. (2006). Evaluation of potential processes for use in warm mix asphalt (With Discussion). Journal of Association of Asphalt Paving Technologists, 75, 41–90.

    Google Scholar 

  • Jenkins, K. J. (2000). Mix design consideration for cold and half-warm bituminous mixes with emphasis on foamed bitumen. Doctoral Dissertation. University of Stellenbosch, South Africa.

    Google Scholar 

  • Jones, C., West, R., Julian, G., et al. (2011). Evaluation of warm mix asphalt in Walla Walla, Washington. NCAT Report 11-06, Auburn, AL.

    Google Scholar 

  • Jones, D., Wu, R. Z., Tsai, B., Barros, C., Peterson, J. (2012). Accelerated loading, laboratory, and field testing studies to fast-track the implementation of warm mix asphalt in California. In: D. Jones (Ed.), Advances in pavement design through full-scale accelerated pavement testing. London: Taylor & Francis Group.

    Google Scholar 

  • Jones, D., Wu, R., Tsai, B. W., et al. (2008) Warm-mix asphalt study: Test Track Construction and First-Level Analysis of Phase 1 HVS and Laboratory Testing. UCPRC-RR-2008-11, Berkley, CA.

    Google Scholar 

  • Kriech, A., Osborn, L., Prowell, B., et al. (2011). Comparison of worker breathing zone exposures between hot mix asphalt and warm mix asphalt applications. In: 2nd Warm Mix Conference, St. Louis, MO.

    Google Scholar 

  • Kristjansdottir, O. (2007). Warm mix asphalt technology adoption. NVF 33 Annual Meeting, Trondheim, Norway.

    Google Scholar 

  • Kvasnak, A., Moore, J., Taylor, A. et al. (2010). Preliminary evaluation of warm mix asphalt field demonstration: Franklin, Tennessee. NCAT Report 10-01, Auburn, AL.

    Google Scholar 

  • Lee, R. (2008). A Summary of Texas’ experience with warm mix asphalt. In: Presentation at Louisiana Warm-Mix Demonstration. Shreveport, LA.

    Google Scholar 

  • Mogawer, W. S., Austerman, A. J. (2008). Laboratory and field evaluation of warm mix asphalt technology. In: International Symposium on Asphalt Pavements and Environment, (pp. 173–184). Zurich, Switzerland.

    Google Scholar 

  • McClean, M. D., Osborn, L. V., Snawder, J. E., et al. (2012). Using urinary biomarkers of polycyclic aromatic compound exposure to guide exposure-reduction strategies among asphalt paving workers. Annual Occupational Hygiene, 56(9), 1013–1024. doi:10.1093/annhyg/mes058.

    Article  Google Scholar 

  • Nadau, G. (2012). Warm mix takes off. Asphalt Pavement Magazine, 17(1), 16–21.

    Google Scholar 

  • NAPA. (2012) Greenhouse Gas Calculator. http://www.asphaltpavement.org/ghgc/ghgcv4.html Cited 19 Mar 2013.

  • NAPA. (2014) How to determine mix cooling time. http://www.asphaltpavement.org/index.php?option=com_content&view=article&id=178&Itemid=331. Cited 19 Mar 2013.

  • NCAT. (2013). NCHRP 9-47A Offers Recommendations for WMA Mix Design Changes. Asphalt Technology E-News, 25, 1. http://www.ncat.us/info-pubs/newsletters/spring-2013/recommendations-for-wma-mix-design-changes.html. Cited 22 Sep 2013.

  • Ozturk, H. I., & Kutay, M. E. (2013). A Novel testing procedure for assessment of quality of foamed warm mix asphalt binders. Journal of Materials in Civil Engineering,. doi:10.1061/(ASCE)MT.1943-5533.0000924.

    Google Scholar 

  • Perkins, S. (2009). Synthesis of warm mix asphalt paving strategies for use in Montana highway construction. FHWA/MT-09-009/8117-38, Bozeman, MT.

    Google Scholar 

  • Prowell, B., Kvasnak, A., Hurley, G., et al. (2008). Engineering properties, emissions, and field performance of warm mix asphalt technologies. NCHRP 9-47, Lexington, KY.

    Google Scholar 

  • Prowell, B., Hurley, G., Frank, B. (2012). Warm-mix asphalt: Best practices (3rd ed.). Lunham, MD.

    Google Scholar 

  • Quin, Q., Farrar, M. J., Pauli, A. T., & Adams, J. J. (2014). Morphology, thermal analysis and rheology of Sasobit modified warm mix asphalt binders. Fuel, 115, 416–425.

    Article  Google Scholar 

  • Spickenheuer, A., Ruhl, R., Hober, D., et al. (2011). Levels and determinants of exposure to vapours and aerosols of bitumen. Archives of Toxicology, 85(Suppl. 1), S21–S28.

    Article  Google Scholar 

  • Vaitkus, A., Čygas, D., Laurinavičius, A., & Perveneckas, Z. (2009). Analysis and Evaluation of Possibilities for the Use of Warm Mix Asphalt in Lithuania. Baltic Journal of Road Bridge Engineering, 4(2), 80–86. doi:10.3846/1822-427X.2009.4.80-86.

    Article  Google Scholar 

  • WALTOW. (2011). Application Guide. Physical properties of solids, liquids and gases. Chicago, IL.

    Google Scholar 

  • Wanger, M., Stangl, K., Blab, R. (2008). Fischer-tropsch paraffin modified bitumen—performance parameter and reduction of energy consumption. In: ISAP International Symposium on Asphalt Pavements and Environment 197-206. Zurich, Switzerland.

    Google Scholar 

  • West, et al. (2014). Properties and performance of warm mix asphalt technologies: Draft. National Center for Asphalt Technology-Auburn University. NCHRP Project 9-47A.

    Google Scholar 

  • West, R. (2013). Overview and discussion of warm mix asphalt technologies. In: Advanced Mix Design course, NCAT. Auburn, AL.

    Google Scholar 

  • Young, T. J., (2007). Energy conservation in hot-mix asphalt production. Quality Improvement Series 126, NAPA.

    Google Scholar 

  • Zaumanis, M., Jansen, J., Haritonovs, V., et al. (2012a). Development of calculation tool for assessing the energy demand of warm mix asphalt. Procedia - Social and Behavioral Sciences, 48, 163–172. doi:10.1016/j.sbspro.2012.06.997.

    Article  Google Scholar 

  • Zaumanis, M., Olesen, E., Haritonovs, V., et al. (2012b). Laboratory evaluation of organic and chemical warm mix asphalt technologies for SMA asphalt. Baltic Journal of Road Bridge Engineering, 7(3), 191–197. doi:10.3846/bjrbe.2012.26.

    Article  Google Scholar 

  • Zaumanis, M., Smirnovs, J. (2011). Analysis of possibilities for use of warm mix asphalt in Latvia. In: Proceedings of Civil Engineering. International Scientific Conference, (pp. 57–64). Jelgava, Latvia.

    Google Scholar 

  • Zaumanis, M. (2010). Warm mix asphalt investigation. Master of Science thesis. Kgs. Lyngby. Technical University of Denmark in cooperation with the Danish Road Institute.

    Google Scholar 

  • Zaumanis M., Mallick R.B. (2013). Review of very high-content reclaimed asphalt use in plant-produced pavement: state of the art. International Journal of Pavement Engineering. doi:10.1080/10298436.2014.893331

Download references

Acknowledgments

The help by ErikOlesen, Erik Nielsen, and Robert Frank, in providing insights of WMA, and Rudy Pinkham for technical assistance is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martins Zaumanis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zaumanis, M. (2014). Warm Mix Asphalt. In: Gopalakrishnan, K., Steyn, W., Harvey, J. (eds) Climate Change, Energy, Sustainability and Pavements. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44719-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44719-2_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44718-5

  • Online ISBN: 978-3-662-44719-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics