Skip to main content

Pavement Life Cycle Assessment

  • Chapter
  • First Online:
Climate Change, Energy, Sustainability and Pavements

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Efficient use of fuel and material resources, reduction in greenhouse gas emissions and control of environmental impacts have become important to the construction industry, including pavement engineering. Life cycle assessment, including carbon footprinting, is one important way of estimating the scale and environmental impacts of resource use and emissions to the environment. LCA results can be used for product development, benchmarking and policy making (e.g. investment decisions). Decision makers need to have confidence in the results of LCA studies and this will require that they are conducted in compliance with standards, in a consistent and transparent way. This chapter provides a short introduction to LCA before describing typical inputs and outputs required for pavement LCA and discussion of LCA standards as applied to road pavements. Some existing pavement LCA studies and tools are introduced and briefly reviewed. Finally, a framework for pavement LCA is suggested along with a checklist for conducting these studies and a note on challenges for developing the method in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    EAF: electric arc furnace; BF: blast furnace; BOF: basic oxygen furnace.

References

  • Athena (2014). The Athena impact estimator for highways [Online]. Athena Sustainable Materials Institute. http://www.athenasmi.org/our-software-data/impact-estimator-for-highways/.

  • Barlow, T. J., Boulter, P. G., & Mccrae, I. S. (2007). Scoping study on the potential for instantaneous emission modelling: summary report. Transport Research Laboratory.

    Google Scholar 

  • Baumann, H., & Tillman, A.-M. (2004). The Hitch Hiker’s guide to LCA: An orientation in life cycle assessment methodology and applications. Lund: Studentlitteratur AB.

    Google Scholar 

  • Birgisdóttir, H., Pihl, K. A., Bhander, G., Hauschild, M. Z., & Christensen, T. H. (2006). Environmental assessment of roads constructed with and without bottom ash from municipal solid waste incineration. Transportation Research Part D: Transport and Environment, 11, 358–368.

    Article  Google Scholar 

  • BRE (2009). BRE Environmental and sustainability standard—framework standard for the responsible sourcing of construction products. UK: Building Research Establishment.

    Google Scholar 

  • BSI (2006a). Environmental labels and declarations: Type III Environmental declarations: Principles and procedures. ISO EN BSI 14025. British Standard Institution.

    Google Scholar 

  • BSI (2006b). Environmental management: Life cycle assessment: Principles and framework. ISO EN BSI 14040. British Standard Institution.

    Google Scholar 

  • BSI (2006c). Environmental management: Life cycle assessment: Requirements and guidelines. ISO EN BSI 14044. British Standard Institution.

    Google Scholar 

  • BSI (2011). PAS 2050: Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standards Institution.

    Google Scholar 

  • BSI (2012). Sustainability of construction works. Environmental product declarations. Core rules for the product category of construction products BS EN 15804. British Standard Institution.

    Google Scholar 

  • Bueche, N., & Dumont, A.-G. (2009). IRF greenhouse gas calculator—analysis and validation. Zurich: Traffic Facilities Laboratory, Swiss Federal Institute of Technology.

    Google Scholar 

  • CARBONTRUST (2006). Carbon footprints in the supply chain: The next step for business. CTC 616. London:The Carbon Trust.

    Google Scholar 

  • Chen, C., Habert, G., Bouzidi, Y., Jullien, A., & Ventura, A. (2010). LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete. Resources, Conservation and Recycling, 54, 1231–1240.

    Article  Google Scholar 

  • Cross, S., Chesner, W., Justus, H., & Kearney, E. (2011). Life-cycle environmental analysis for evaluation of pavement rehabilitation options. Transportation Research Record, 2227, 43–52.

    Google Scholar 

  • DEFRA. (2011). Guidelines to Defra/DECC’s GHG conversion factors for company reporting: methodology Paper for emission factors. Bristol: Department for Environment, Food and Rural Affairs.

    Google Scholar 

  • EAPA (2009). Asphalt in figures 2009. Brussels: European Asphalt Pavement Association.

    Google Scholar 

  • ECRPD (2010). Energy conservation in road pavement design, maintenance and utilisation. Grant Agreement: EIE/06/039/SI2.448265: Intelligent Energy—Europe.

    Google Scholar 

  • Ekvall, T., & Tillman, A.-M. (1997). Open-loop recycling: Criteria for allocation procedures. The International Journal of Life Cycle Assessment, 2, 155–162.

    Article  Google Scholar 

  • EMEP/EEA (2013). EMEP/EEA air pollutant emission inventory guidebook 2013: Technical guidance to prepare national emission inventories. European Monitoring Evaluation Programme/European Environmental Agency.

    Google Scholar 

  • EPA (2014a). LCA Resources [Online]. United States Environmental Protection Agency. http://www.epa.gov/nrmrl/std/lca/resources.html.

  • EPA (2014b). Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) [Online]. United States Environmental Protection Agency. http://www.epa.gov/nrmrl/std/traci/traci.html.

  • ERA (2014). ERA-NET Road [Online]. European Road Administration. http://www.eranetroad.org/.

  • Eurobitume (1999). Partial life cycle inventory or ‘‘eco-profile’’ for paving grade bitumen. Brussels: European Bitumen Association.

    Google Scholar 

  • Eurobitume (2011). Life cycle inventory: bitumen. Brussels: The European Bitumen Association.

    Google Scholar 

  • Frees, N. (2008). Crediting aluminium recycling in LCA by demand or by disposal. The International Journal of Life Cycle Assessment, 13, 212–218.

    Article  Google Scholar 

  • Frischknecht, R. (2010). LCI modelling approaches applied on recycling of materials in view of environmental sustainability, risk perception and eco-efficiency. The International Journal of Life Cycle Assessment, 15, 666–671.

    Article  Google Scholar 

  • Guinee, J. B. (ed.) (2002). Handbook on life cycle assessment—operational guide to the ISO standards. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Guo, M., & Murphy, R. J. (2012). LCA data quality: Sensitivity and uncertainty analysis. Science of the Total Environment, 435–436, 230–243.

    Article  Google Scholar 

  • Hakkinen, T., & Makela, K. (1996). Environmental adaption of concrete—environmental impact of concrete and asphalt pavements. Espoo: Technical Research Centre of Finland (VTT).

    Google Scholar 

  • Hammarstrom, U., Karlsson, R., & Sorensen, H. (2009). Road surface effects on rolling resistance—coastdown measurements with uncertainty analysis in focus. Deliverable D5(a) of the Energy Conservation in Road Pavement Design, Maintenance and Utilisation (ECRPD). Swedish National Road and Transport Research Institute (VTI).

    Google Scholar 

  • Hammond, G., & Jones, C. (2011). Inventory of carbon and energy (ICE) version 2.0. Bath: University of Bath.

    Google Scholar 

  • Highways Agency (2003). Building better roads: Towards sustainable construction: The Highways Agency’s contribution to sustainable development through the construction and maintenance of the strategic road network in England.

    Google Scholar 

  • Horvath, A., Pacca, S., Masanet, E., & Canapa, R. (2003). Consortium on green design and manufacturing—pavement life-cycle assessment tool for environmental and economic effects (PaLATE) [Online]. http://www.ce.berkeley.edu/~horvath/palate.html.

  • Huang, Y. (2007). Life cycle assessment of use of recycled materials in asphalt pavements. PhD, Newcastle University

    Google Scholar 

  • Huang, Y. (2010). Life cycle assessment in road construction. In Sustainable measurement in road construction. Loughborough, UK

    Google Scholar 

  • Huang, Y., Bird, R., & Bell, M. (2009a). A comparative study of the emissions by road maintenance works and the disrupted traffic using life cycle assessment and micro-simulation. Transportation Research Part D: Transport and Environment, 14, 197–204.

    Article  Google Scholar 

  • Huang, Y., Bird, R., & Heidrich, O. (2009b). Development of a life cycle assessment tool for construction and maintenance of asphalt pavements. Journal of Cleaner Production, 17, 283–296.

    Article  Google Scholar 

  • Huang, Y., Hakim, B., & Zammataro, S. (2012). Measuring the carbon footprint of road construction using CHANGER. International Journal of Pavement Engineering, 14, 590–600.

    Article  Google Scholar 

  • Huang, Y., Spray, A., & Parry, T. (2013). Sensitivity analysis of methodological choices in road pavement LCA. The International Journal of Life Cycle Assessment, 18, 93–101.

    Article  Google Scholar 

  • Hughes, L., Phear, A., Nicholson, D., Pantelidou, H., Soga, K., Guthrie, P., Kidd, A. & Fraser, N. (2011). Carbon dioxide from earthworks: a bottom-up approach. In Proceedings of the ICE—Civil Engineering [Online], (p. 164).

    Google Scholar 

  • ICE (2008). CEEQUAL scheme description and assessment process handbook. The Institution of Civil Engineers.

    Google Scholar 

  • ILCD (2010). International reference life cycle data system: General guild for life cycle assessment—detailed guidance. Luxembourg: European Commission—Joint Research Centre—Institute for Environment and Sustainability.

    Google Scholar 

  • Inamura, H., Piantanakulchai, M., & Takeyama, Y. (2000). A life cycle inventory analysis of carbon dioxide for a highway construction project using input-output scheme: A case study of the tohoku expressway construction works. In 8th International Conference on Input-Output Techniques. Macerata, Italy.

    Google Scholar 

  • IPCC (2007). Climate change 2007: The physical science basis. Intergovernmental Panel on Climate Change.

    Google Scholar 

  • IRF (2007). Green path to climate neutral roads. In: World highways November/December 2007, (pp. 22–23). Alexandria: International Road Federation.

    Google Scholar 

  • Keesom, W., Unnasch, S., & MORETTA, J. (2009). Life cycle assessment comparison of North American and imported crudes. Jacob Consultancy Life Cycle Associates—prepared for Alberta Energy Research Institute—File no: AERI 1747.

    Google Scholar 

  • Kneifel, J., & Greig, A. L. (2014). BEES please questionnaire users guide. Gaithersburg: National Institute of Standards and Technology.

    Google Scholar 

  • Lepert, P., & Brillet, F. (2009). The overall effects of road works on global warming gas emissions. Transportation Research Part D: Transport and Environment, 14, 576–584.

    Article  Google Scholar 

  • Levasseur, A., Lesage, P., Margni, M., Deschênes, L., & Samson, R. (2010). Considering time in LCA: Dynamic LCA and its application to global warming impact assessments. Environmental Science and Technology, 44, 3169–3174.

    Article  Google Scholar 

  • Marceau, M. L., Nisbet, M. A., & VanGeem, M. G. (2007). Life cycle inventory of portland cement concrete. PCA R&D Serial No. 3011. Portland Cement Association.

    Google Scholar 

  • Masanet, E., & Sathaye, J. (2009). Challenges and opportunities in accounting for non-energy use CO2 emissions: an editorial comment. Climatic Change, 95, 395–403.

    Article  Google Scholar 

  • Milachowski, C., Stengel, T., & Gehlen, C. (2011). Life cycle assessment for road construction and use. EUPAVE—European Concrete Paving Association.

    Google Scholar 

  • Mildenberger, U., & Khare, A. (2000). Planning for an environment-friendly car. Technovation, 20, 205–214.

    Article  Google Scholar 

  • Mroueh, U.-M., Eskola, P., & Laine-Ylijoki, J. (2001). Life-cycle impacts of the use of industrial by-products in road and earth construction. Waste Management, 21, 271–277.

    Article  Google Scholar 

  • Muench, S. T., Anderson, J. L., Hatfield, J. P., Koester, J. R., & Söderlund, M. (2011). Greenroads Manual v1.5. University of Washington & CH2MHill.

    Google Scholar 

  • Nicholson, A. L., Olivetti, E. A., Gregory, J. R., Field, F. R., & Kirchain, R. E. (2009) End-of-life LCA allocation methods: Open loop recycling impacts on robustness of material selection decisions. In IEEE International Symposium on Sustainable Systems and Technology, 2009. ISSST ‘09 (pp. 1–6). May 18–20, 2009.

    Google Scholar 

  • Nicholson, I. (2010, February 02). The CEEQUAL assessment and award scheme. In Sustainability measurement in road construction. Loughborough: Loughborough University.

    Google Scholar 

  • Parry, A. R. (2005). A model set of asphalt sustainability indicators. TRL Report 638. Transport Research Laboratory.

    Google Scholar 

  • Peuportier, B. L. P. (2001). Life cycle assessment applied to the comparative evaluation of single family houses in the French context. Energy and Buildings, 33, 443–450.

    Article  Google Scholar 

  • Piantanakulchai, M., Inamura, H., & Takeyama, Y. (1999). A life cycle inventory analysis of carbon-dioxide for a highway construction project using input–output scheme: A case study of the Tohoku expressway construction works. Journal of Infrastructure Planning and Management of Japan Society of Civil Engineers, 16, 411–418.

    Google Scholar 

  • Read, J., & Whiteoak, D. (2003). The shell bitumen handbook (5th ed.). London: Thomas Telford Publishing.

    Google Scholar 

  • Santero, N., Loijos, A., Akbarian, M., & Ochsendorf, J. (2011a). Methods, impacts, and opportunities in the concrete pavement life cycle. Massachusetts: Massachusetts Institute of Technology.

    Google Scholar 

  • Santero, N. J., Masanet, E., & Horvath, A. (2011b). Life-cycle assessment of pavements. Part I: Critical review. Resources, Conservation and Recycling, 55, 801–809.

    Article  Google Scholar 

  • Sarbanes, P., & Oxley, M. (2002). The Sarbanes-Oxley Act. In: CONGRESS, T. U. S. (ed.).

    Google Scholar 

  • Sayagh, S., Ventura, A., Hoang, T., François, D., & Jullien, A. (2010). Sensitivity of the LCA allocation procedure for BFS recycled into pavement structures. Resources, Conservation and Recycling, 54, 348–358.

    Article  Google Scholar 

  • Schenck, R. (2000). Using LCA for procurement decisions: A case study performed for the U.S. environmental protection agency. Environmental Progress, 19, 110–116.

    Article  Google Scholar 

  • Sinden, G. (2009). The contribution of PAS 2050 to the evolution of international greenhouse gas emission standards. The International Journal of Life Cycle Assessment, 14, 195–203.

    Article  Google Scholar 

  • Spielmann, M., & Scholz, R. (2005). Life cycle inventories of transport services: background data for freight transport (10 pp). The International Journal of Life Cycle Assessment, 10, 85–94.

    Article  Google Scholar 

  • Stripple, H. (2000). Life cycle inventory of asphalt pavements. Gothenburg: Swedish Environmental Research Institute (IVL).

    Google Scholar 

  • Stripple, H. (2001). Life cycle assessment of road—a pilot study for inventory analysis. Gothenburg: Swedish Environmental Research Institute (IVL).

    Google Scholar 

  • TRL (2011). Asphalt pavement embodied carbon tool [Online]. Transport Research Laboratory. http://www.sustainabilityofhighways.org.uk/.

  • Vogtländer, J., Brezet, H., & Hendriks, C. (2001). Allocation in recycling systems. The International Journal of Life Cycle Assessment, 6, 344–355.

    Article  Google Scholar 

  • Wang, M., Lee, H., & Molburg, J. (2004). Allocation of energy use in petroleum refineries to petroleum products. The International Journal of Life Cycle Assessment, 9, 34–44.

    Article  Google Scholar 

  • Wang, T., Lee, I.-S., Kendall, A., Harvey, J., Lee, E.-B., & Kim, C. (2012). Life cycle energy consumption and GHG emission from pavement rehabilitation with different rolling resistance. Journal of Cleaner Production, 33, 86–96.

    Article  Google Scholar 

  • Wayman, M., Parry, T., Andersson-Sköld, Y., Bergman, R., Huang, Y., Raaberg, J., & Enell, A. (2012). Re-road—end-of-life strategies of asphalt pavements. Deliverable 3.4. Life cycle assessment of reclaimed asphalt. In: A FP7 Collaborative Project Work programme: Sustainable Surface Transport: End of life strategies for vehicles/vessels and infrastructures.

    Google Scholar 

  • Wayman, M., Schiavi-mellor, I., & Cordell, B. (2011). Protocol for the calculation of whole life cycle greenhouse gas emissions generated by asphalt—part of the asphalt pavement embodied carbon tool (asPECT). Berkshire: Transport Research Laboratory.

    Google Scholar 

  • Wenzel, H. (2006). An international review of life cycle comparison for key materials in the UK recycling sector. Technical University of Denmark.

    Google Scholar 

  • Wiedmann, T. (2009). Editorial: Carbon footprint and input–output analysis—an introduction. Economic Systems Research, 21, 175–186.

    Article  Google Scholar 

  • World_Steel_Association (2008). Application of the worldsteel LCI data to recycling scenarios—worldsteel recycling methodology.

    Google Scholar 

  • Young, S., Turnbull, S., & Russell, A. (2002). Toward a sustainable cement industry (Substudy 6): What LCA can tell us about the cement industry. World Business Council for Sustainable Development: Five Winds International

    Google Scholar 

  • Zammataro, S., Laych, K., Sheela, V., Rao, M. R., Huang, Y., & Hakim, B. (2011). Assessing greenhouse gas emissions in road construction: an example of calculation tool for road projects. In: PIARC seminar on Reducing the Carbon Footprint in Road Construction. New Delhi, India, February 17–19, 2011.

    Google Scholar 

  • Zapata, P., & Gambatese, J. A. (2005). Energy consumption of asphalt and reinforced concrete pavement materials and construction. Journal of Infrastructure Systems, 11, 9–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huang, Y., Parry, T. (2014). Pavement Life Cycle Assessment. In: Gopalakrishnan, K., Steyn, W., Harvey, J. (eds) Climate Change, Energy, Sustainability and Pavements. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44719-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44719-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44718-5

  • Online ISBN: 978-3-662-44719-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics