Personalized Multimedia Search

  • Jitao SangEmail author
Part of the Springer Theses book series (Springer Theses)


Given results from multimedia content analysis and user modeling, personalized multimedia services are developed to satisfy customized needs. In this chapter, we introduce a general solution framework for personalized multimedia search. We first propose a multimodal generative model to simultaneously address tasks of multimedia content analysis and user modeling, and then present the risk minimization-based theoretical framework for personalized image search. The framework considers the noisy tag issue and enables easy incorporation of social relation.


Query Model Topic Distribution Visual Descriptor Maximally Stable Extremal Region Personalized Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social networks. In: KDD, pp. 7–15 (2008)Google Scholar
  2. 2.
    Bender, M., Crecelius, T., Kacimi, M., Michel, S., Neumann, T., Parreira, J.X., Schenkel, R., Weikum, G.: Exploiting social relations for query expansion and result ranking. In: ICDE Workshops, pp. 501–506 (2008)Google Scholar
  3. 3.
    Blei, D.M., Jordan, M.I.: Modeling annotated data. In: SIGIR, pp. 127–134 (2003)Google Scholar
  4. 4.
    Carmel, D., Zwerdling, N., Guy, I., Ofek-Koifman, S., Har’El, N., Ronen, I., Uziel, E., Yogev, S., Chernov, S.: Personalized social search based on the user’s social network. In: CIKM, pp. 1227–1236 (2009)Google Scholar
  5. 5.
    Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: KDD, pp. 1029–1038 (2010)Google Scholar
  6. 6.
    Chirita, P.-A., Nejdl, W., Paiu, R., Kohlschütter, C.: Using odp metadata to personalize search. In: SIGIR, pp. 178–185 (2005)Google Scholar
  7. 7.
    Chua, T.-S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: Nus-wide: a real-world web image database from National University of Singapore. In: CIVR (2009)Google Scholar
  8. 8.
    Cialdini, R.B.: Influence: The Psychology of Persuasion. HarperCollins, New York (2009)Google Scholar
  9. 9.
    Crandall, D.J., Cosley, D., Huttenlocher, D.P., Kleinberg, J.M., Suri, S.: Feedback effects between similarity and social influence in online communities. In: KDD, pp. 160–168 (2008)Google Scholar
  10. 10.
    Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  11. 11.
    Gou, L., Chen, H.-H., Kim, J.-H., Zhang, X., Giles, C.L.: Sndocrank: a social network-based video search ranking framework. In: Multimedia, Information Retrieval, pp. 367–376 (2010)Google Scholar
  12. 12.
    Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD, pp. 137–146 (2003)Google Scholar
  13. 13.
    Kraft, R., Maghoul, F., Chang, C.-C.: Y!q: contextual search at the point of inspiration. In: CIKM, pp. 816–823 (2005)Google Scholar
  14. 14.
    Lafferty, J.D., Zhai, C.: Document language models, query models, and risk minimization for information retrieval. In: SIGIR, pp. 111–119 (2001)Google Scholar
  15. 15.
    Lane, N.D., Lymberopoulos, D., Zhao, F., Campbell, A.T.: Hapori: context-based local search for mobile phones using community behavioral modeling and similarity. In: Proceedings of the UbiComp, pp. 109–118 (2010)Google Scholar
  16. 16.
    Lerman, K.: Handbook of Research on Web 2.0, 3.0, and X.0: Technologies, Business, and Social Applications, Chapter Leveraging User-specified Metadata to Personalize Image Search. IGI Global, Pennsylvania (2009)Google Scholar
  17. 17.
    Liu, L., Tang, J., Han, J., Jiang, M., Yang, S.: Mining topic-level influence in heterogeneous networks. In: CIKM, pp. 199–208 (2010)Google Scholar
  18. 18.
    Lu, D., Li, Q.: Personalized search on flickr based on searcher’s preference prediction. In: WWW (Companion Volume), pp. 81–82 (2011)Google Scholar
  19. 19.
    Lu, D., Li, Q., Liao, S.: A graph-based action network framework to identify prestigious members through member’s prestige evolution. Decis. Support Syst. 53(1), 44–54 (2012)CrossRefGoogle Scholar
  20. 20.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  21. 21.
    Pang, L., Cao, J., Zhang, Y., Lin, S.: Leveraging collective wisdom for web video retrieval through heterogeneous community discovery. In: ACM Multimedia, pp. 1485–1488 (2011)Google Scholar
  22. 22.
    Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 275–281 (1998)Google Scholar
  23. 23.
    Qiu, F., Cho, J.: Automatic identification of user interest for personalized search. In: WWW, pp. 727–736 (2006)Google Scholar
  24. 24.
    Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  25. 25.
    Ronald, N., Dignum, V., Jonker, C.M.: When will i see you again: modelling the influence of social networks on social activities. In: MALLOW (2010)Google Scholar
  26. 26.
    Sang, J., Xu, C.: Right buddy makes the difference: an early exploration of social relation analysis in multimedia applications. In: ACM Multimedia, pp. 19–28 (2012).
  27. 27.
    Sang, J., Xu, C.: Social influence analysis and application on multimedia sharing websites. TOMCCAP, 9(1s) (2013).
  28. 28.
    Sang, J., Xu, C., Liu, J.: User-aware image tag refinement via ternary semantic analysis. IEEE Trans. Multimed. 14(3), 883–895 (2012)CrossRefGoogle Scholar
  29. 29.
    Smyth, B.: A community-based approach to personalizing web search. Computer 40(8), 42–50 (2007)CrossRefGoogle Scholar
  30. 30.
    Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale networks. In: KDD, pp. 807–816 (2009)Google Scholar
  31. 31.
    Xiang, R., Neville, J., Rogati, M.: Modeling relationship strength in online social networks. In: WWW, pp. 981–990 (2010)Google Scholar
  32. 32.
    Zhuang, J., Mei, T., Hoi, S.C.H., Hua, X.-S., Li, S.: Modeling social strength in social media community via kernel-based learning. In: ACM Multimedia, pp. 113–122 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.National Lab of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina

Personalised recommendations