User Modeling on Social Multimedia Activity

  • Jitao SangEmail author
Part of the Springer Theses book series (Springer Theses)


The increasing social multimedia activities conducted on multimedia sharing web sites reveal user attributes, such as age, gender, and personal interest, which have been exploited for user modeling, retrieval, and personalization. While existing user modeling solutions are devoted to inferring user attribute independently, in this chapter, we investigate the problem of relational user attribute inference. The task of attribute relation mining and user attribute inference are addressed in a unified framework.


Attribute Relation User Profile Target Attribute User Feature User Attribute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social networks. In: KDD, pp. 7–15 (2008)Google Scholar
  2. 2.
    Bennett, P.N., White, R.W., Chu, W., Dumais, S.T., Bailey, P., Borisyuk, F., Cui, X.: Modeling the impact of short- and long-term behavior on search personalization. In: SIGIR, pp. 185–194 (2012)Google Scholar
  3. 3.
    Bi, B., Shokouhi, M., Kosinski, M., Graepel, T.: Inferring the demographics of search users: social data meets search queries. In: WWW, pp. 131–140 (2013)Google Scholar
  4. 4.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  5. 5.
    Boulis, C., Ostendorf, M.: A quantitative analysis of lexical differences between genders in telephone conversations. In: ACL (2005)Google Scholar
  6. 6.
    Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet: a content-based approach to geo-locating twitter users. In: CIKM, pp. 759–768 (2010)Google Scholar
  7. 7.
    Conover, M., Gonçalves, B., Ratkiewicz, J. Flammini, A., Menczer, F.: Predicting the political alignment of twitter users. In: SocialCom/PASSAT, pp. 192–199 (2011)Google Scholar
  8. 8.
    Crandall, D.J., Cosley, D., Huttenlocher, D.P., Kleinberg, J.M., Suri, S.: Feedback effects between similarity and social influence in online communities. In: KDD, pp. 160–168 (2008)Google Scholar
  9. 9.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. CVPR 1, 886–893 (2005)Google Scholar
  10. 10.
    Do, T.M.T., Artières, T.: Large margin training for hidden markov models with partially observed states. In: ICML, p. 34 (2009)Google Scholar
  11. 11.
    Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)zbMATHGoogle Scholar
  12. 12.
    Felzenszwalb, P.F., McAllester, D.A., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: CVPR (2008)Google Scholar
  13. 13.
    Filatova, E., Prager, J.M.: Occupation inference through detection and classification of biographical activities. Data Knowl. Eng. 76, 39–57 (2012)CrossRefGoogle Scholar
  14. 14.
    Garera, N., Yarowsky, D.: Modeling latent biographic attributes in conversational genres. In: ACL/AFNLP, pp. 710–718 (2009)Google Scholar
  15. 15.
    Garera, N., Yarowsky, D.: Structural, transitive and latent models for biographic fact extraction. In: EACL, pp. 300–308 (2009)Google Scholar
  16. 16.
    Hu, J., Zeng, H.-J., Li, H., Niu, C., Chen, Z.: Demographic prediction based on user’s browsing behavior. In: WWW, pp. 151–160 (2007)Google Scholar
  17. 17.
    Jones, R., Kumar, R., Pang, B.,Tomkins, A.: I know what you did last summer: query logs and user privacy. In: CIKM, pp. 909–914 (2007)Google Scholar
  18. 18.
    Koenigstein, N., Dror, G., Koren,Y.: Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy. In: RecSys, pp. 165–172 (2011)Google Scholar
  19. 19.
    Koren, Y.: Collaborative filtering with temporal dynamics. Commun. ACM 53(4), 89–97 (2010)CrossRefGoogle Scholar
  20. 20.
    Magno, G., Comarela, G., Sáez-Trumper, D., Cha, M., Almeida, V.: New kid on the block: exploring the google\(+\) social graph. In: Internet Measurement Conference, pp. 159–170 (2012)Google Scholar
  21. 21.
    Mann, G.S., Yarowsky, D.: Multi-field information extraction and cross-document fusion. In: ACL (2005)Google Scholar
  22. 22.
    Mislove, A., Viswanath, B., Gummadi, P.K., Druschel, P.: You are who you know: inferring user profiles in online social networks. In: WSDM, pp. 251–260 (2010)Google Scholar
  23. 23.
    Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate inference: an empirical study. In: UAI, pp. 467–475 (1999)Google Scholar
  24. 24.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)CrossRefGoogle Scholar
  25. 25.
    Otterbacher, J.: Inferring gender of movie reviewers: exploiting writing style, content and metadata. In: CIKM, pp. 369–378 (2010)Google Scholar
  26. 26.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. CoRR, cs.CL/0205070 (2002)Google Scholar
  27. 27.
    Pennacchiotti, M., Popescu, A.-M.: Democrats, republicans and starbucks afficionados: user classification in twitter. In: KDD, pp. 430–438 (2011)Google Scholar
  28. 28.
    Rao, D., Yarowsky, D., Shreevats, A., Gupta, M.: Classifying latent user attributes in twitter. In: Proceedings of SMUC-10, ACM, pp. 710–718 (2010)Google Scholar
  29. 29.
    Tan, C., Lee, L., Tang, J., Jiang, L., Zhou, M., Li, P.: User-level sentiment analysis incorporating social networks. In: KDD, pp. 1397–1405 (2011)Google Scholar
  30. 30.
    Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, MA.: Context-based vision system for place and object recognition. In: ICCV, pp. 273–280 (2003)Google Scholar
  31. 31.
    Wang, J., Yang, J., Yu, K., Lv, F., Huang, T.S., Gong, Y.: Locality-constrained linear coding for image classification. In: CVPR, pp. 3360–3367 (2010)Google Scholar
  32. 32.
    Wolpert, D.H.: Stacked generalization. Neural Netw. 5, 241–259 (1992)CrossRefGoogle Scholar
  33. 33.
    Xiang, R., Neville, J., Rogati, M.: Modeling relationship strength in online social networks. In: WWW, pp. 981–990 (2010)Google Scholar
  34. 34.
    Xiong, L., Chen, X., Huang, T.-K., Schneider, J.G., Carbonell, J.G.: Temporal collaborative filtering with bayesian probabilistic tensor factorization. In: SDM, pp. 211–222 (2010)Google Scholar
  35. 35.
    Ying, J.J.-C., Chang, Y.-J., Huang, C.-M., Tseng, V.S.: Demographic prediction based on users mobile behaviors. Mob. Data Chall. (2012)Google Scholar
  36. 36.
    Yu, C.-N.J., Joachims, T.: Learning structural svms with latent variables. In: ICML, pp. 147 (2009)Google Scholar
  37. 37.
    Yu, K., Guan, G., Zhou, M.: Resume information extraction with cascaded hybrid model. In: ACL (2005)Google Scholar
  38. 38.
    Zamal, F.A., Liu, W., Ruths, D.: Homophily and latent attribute inference: inferring latent attributes of twitter users from neighbors. In: ICWSM (2012)Google Scholar
  39. 39.
    Zheleva, E., Getoor, L.: To join or not to join: the illusion of privacy in social networks with mixed public and private user profiles. In: WWW, pp. 531–540 (2009)Google Scholar
  40. 40.
    Zhou, L., Ticrea, M., Hovy, E.H.: Multi-document biography summarization. In: EMNLP, pp. 434–441 (2004)Google Scholar
  41. 41.
    Zhu, J., Hoi, S.C.H., Lyu, M.R., Yan,S.: Near-duplicate keyframe retrieval by nonrigid image matching. In: ACM Multimedia, pp. 41–50 (2008)Google Scholar
  42. 42.
    Zhuang, J., Mei, T., Hoi, S.C.H., Hua, X.-S., Li, S.: Modeling social strength in social media community via kernel-based learning. In: ACM Multimedia, pp. 113–122 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.National Lab of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina

Personalised recommendations