• Jitao SangEmail author
Part of the Springer Theses book series (Springer Theses)


Different from traditional and web multimedia computing which are content-centric, social multimedia computing is essentially user-centric: (1) social multimedia data is constituted by what users see, listen, think, feel, and speak; (2) social multimedia analysis and application is toward customized user services. In this chapter, we first give an overview of social multimedia computing, introduce the challenges and progresses in this field, and then describe the specifications of user-centric social multimedia computing. At the end, we outline the structure of this book.


Short Message Service Multimedia Content Multimedia Document Social Media Network Multimedia Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ahlqvist, T.: Social Media Roadmaps: Exploring the Futures Triggered by Social Media. VTT (2008)Google Scholar
  2. 2.
    Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., Ravichandran, D., Aly, M.: Video suggestion and discovery for youtube: taking random walks through the view graph. In: WWW, 2008, pp. 895–904Google Scholar
  3. 3.
    Bender, M., Crecelius, T., Kacimi, M., Michel, S., Neumann, T., Parreira, J.X., Schenkel, R., Weikum, G.: Exploiting social relations for query expansion and result ranking. In: ICDE Workshops, 2008, pp. 501–506Google Scholar
  4. 4.
    Boll, S., Jain, R., Luo, J., Xu, D.: Introduction to special issue on social media. TOMCCAP 7 (Supplement), 25 (2011)Google Scholar
  5. 5.
    Cai, Y., Li, Q.: Personalized search by tag-based user profile and resource profile in collaborative tagging systems. In: CIKM, 2010, pp. 969–978Google Scholar
  6. 6.
    Cao, L., Yu, J., Luo, J., Huang, T.S.: Enhancing semantic and geographic annotation of web images via logistic canonical correlation regression. In: Proceedings of the 17th ACM International Conference on Multimedia, pp. 125–134. ACM (2009)Google Scholar
  7. 7.
    Carmel, D., Zwerdling, N., Guy, I., Ofek-Koifman, S., Har’El, N., Ronen, I., Uziel, E., Yogev, S., Chernov, S.: Personalized social search based on the user’s social network. In: CIKM, pp. 1227–1236 (2009)Google Scholar
  8. 8.
    Chen, L., Xu, D., Tsang, I.W.-H., Luo, J.: Tag-based web photo retrieval improved by batch mode re-tagging. In: CVPR, pp. 3440–3446 (2010)Google Scholar
  9. 9.
    Daoud, M., Tamine-Lechani, L., Boughanem, M., Chebaro, B.: A session based personalized search using an ontological user profile. In: SAC, pp. 1732–1736 (2009)Google Scholar
  10. 10.
    Dong, Y., Tang, J., Wu, S., Tian, J., Chawla, N. V., Rao, J., Cao, H.: Link prediction and recommendation across heterogeneous social networks. In: Data Mining (ICDM), 2012 IEEE 12th International Conference on, pp. 181–190. IEEE (2012)Google Scholar
  11. 11.
    Gou, L., Chen, H.-H., Kim, J.-H., Zhang, X., Giles, C.L.: Sndocrank: a social network-based video search ranking framework. In: Multimedia, Information Retrieval (2010)Google Scholar
  12. 12.
    Jain, R., Sonnen, D.: Social life networks. IT Prof. 13(5), 8–11 (2011)CrossRefGoogle Scholar
  13. 13.
    Jin, X., Gallagher, A.C., Cao, L., Luo, J., Han, J.: The wisdom of social multimedia: using flickr for prediction and forecast. In: ACM Multimedia, pp. 1235–1244 (2010)Google Scholar
  14. 14.
    Jin, X., Wang, C., Luo, J., Yu, X., Han, J.: Likeminer: a system for mining the power of ‘like’ in social media networks. In: KDD, pp. 753–756 (2011)Google Scholar
  15. 15.
    Jin, Y., Khan, L., Wang, L., Awad, M.: Image annotations by combining multiple evidence & wordnet. In: ACM Multimedia, pp. 706–715 (2005)Google Scholar
  16. 16.
    Liu, D., Hua, X.-S., Yang, L., Wang, M., Zhang, H.-J.: Tag ranking. In: WWW, pp. 351–360 (2009)Google Scholar
  17. 17.
    Liu, D., Hua, X.-S., Zhang, H.-J.: Content-based tag processing for internet social images. Multimedia Tools Appl. 51(2), 723–738 (2011)CrossRefGoogle Scholar
  18. 18.
    Liu, D., Ye, G., Chen, C.-T, Yan, S., Chang, S.-F.: Hybrid social media network (2012)Google Scholar
  19. 19.
    Man Au Yeung, C., Gibbins, N., Shadbolt, N.: A study of user profile generation from folksonomies. In: SWKM (2008)Google Scholar
  20. 20.
    Mezghani, M., Zayani, C.A., Amous, I., Gargouri, F.: A user profile modelling using social annotations: a survey. In: WWW (Companion Volume), pp. 969–976 (2012)Google Scholar
  21. 21.
    Naaman, M.: Social multimedia: Highlighting opportunities for search and mining of multimedia data in social media applications. Multimedia Tools Appl. 56(1), 9–34 (2012)CrossRefGoogle Scholar
  22. 22.
    Nguyen, T.V., Liu, S., Ni, B., Tan, J., Rui, Y., Yan. S.: Sense beauty via face, dressing, and/or voice. In: ACM Multimedia, pp. 239–248 (2012)Google Scholar
  23. 23.
    Pang, L., Cao, J., Zhang, Y., Lin, S.: Leveraging collective wisdom for web video retrieval through heterogeneous community discovery. In: ACM Multimedia, pp. 1485–1488 (2011)Google Scholar
  24. 24.
    Pinto, H., Almeida, J.M., Gonçalves, M.A.: Using early view patterns to predict the popularity of youtube videos. In: WSDM, pp. 365–374 (2013)Google Scholar
  25. 25.
    Sang, J., Xu, C.: Right buddy makes the difference: an early exploration of social relation analysis in multimedia applications. In: ACM Multimedia, pp. 19–28 (2012)Google Scholar
  26. 26.
    Sugiyama, K., Hatano, K and Yoshikawa, M.: Adaptive web search based on user profile constructed without any effort from users. In: WWW, pp. 675–684 (2004)Google Scholar
  27. 27.
    Tamine-Lechani, L., Boughanem, M., Zemirli, N.: Personalized document ranking: Exploiting evidence from multiple user interests for profiling and retrieval. JDIM 6(5), 354–365 (2008)Google Scholar
  28. 28.
    Tian, Y., Srivastava, J., Huang, T., Contractor, N., et al.: Social multimedia computing, pp. 27–36 (2010)Google Scholar
  29. 29.
    Tian, Y., Yu, S., Lin, C.-Y., Gao, W., Zhou, W.: Special issue on social multimedia computing: Challenges, techniques, and applications. J. Multimedia 9(1), 1–3 (2014)CrossRefGoogle Scholar
  30. 30.
    Wang, C., Jing, F., Zhang, L., Zhang, H.-J.: Content-based image annotation refinement. In: CVPR (2007)Google Scholar
  31. 31.
    Wang, Y.: When music, information technology, and medicine meet. In: MIRUM, pp. 43–44 (2012)Google Scholar
  32. 32.
    Yang, B., Mei, T., Hua, X.-S., Yang, L., Yang, S.-Q., Li, M.: Online video recommendation based on multimodal fusion and relevance feedback. In: CIVR, pp. 73–80 (2007)Google Scholar
  33. 33.
    Yi, J., Peng, Y., Xiao, J.: Mining concept relationship in temporal context for effective video annotation. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 1053–1056. ACM (2011)Google Scholar
  34. 34.
    Zhu, G., Yan, S., Ma, Y.: Image tag refinement towards low-rank, content-tag prior and error sparsity. In: ACM Multimedia, pp. 461–470 (2010)Google Scholar
  35. 35.
    Zhuang, J., Mei, T., Hoi, S.C.H., Hua, X.-S., Li, S.: Modeling social strength in social media community via kernel-based learning. In: ACM Multimedia, pp. 113–122 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.National Lab of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina

Personalised recommendations