Skip to main content

New Developments in Laser Spectroscopy

  • Chapter
  • 4996 Accesses

Abstract

During the last few years several new ideas have been born and new spectroscopic techniques have been developed that not only improve the spectral resolution and increase the sensitivity for investigating single atoms but that also allow several interesting experiments for testing fundamental concepts of physics. In the historical development of science, experimental progress in the accuracy of measurements has often brought about a refinement of theoretical models or even the introduction of new concepts (Hall in Quantum optics, experimental gravity and measurement theory, Plenum, New York, 1983). Examples include A. Einstein’s theory of special relativity based on the interferometric experiments of Michelson and Morley (Miller in Albert Einstein’s special theory of relativity, Addison-Wesley, Reading, 1981; Heilbron in Max Planck, Hirzel, Stuttgart, 1988), M. Planck’s introduction of quantum physics for the correct explanation of the measured spectral distribution of blackbody radiation, the introduction of the concept of electron spin after the spectroscopic discovery of the fine structure in atomic spectra (Kuhn in Atomic spectra, 2nd edn., Longman, London, 1971; Sobelman in Atomic spectra and radiative transitions, 2nd edn., Springer ser. atoms plasmas, vol. 12, Springer, Berlin, 1992), the test of quantum electrodynamics by precision measurements of the Lamb shift (Lamb and Retherford in Phys. Rev. 72:241, 1947; Phys. Rev. 79:549, 1959) or the still unresolved problem of a possible time dependence of physical fundamental constants, which might be solved by performing extremely accurate optical frequency measurements. In this chapter some of these new and exciting developments are presented.

The original version of this chapter was revised: Typo was corrected on page 566 of the chapter. The erratum to this chapter is available at http://dx.doi.org/10.1007/978-3-662-44641-6_11.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-662-44641-6_11

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

Chapter 5

  1. W.C. Stwalley, H. Wang, Photoassociation of ultracold atoms: a new spectroscopic technique. J. Mol. Spectrosc. 194, 228 (1999)

    Google Scholar 

Chapter 9

  1. J.L. Hall, Some remarks on the interaction between precision physical measurements and fundamental physical theories, in Quantum Optics, Experimental Gravity and Measurement Theory, ed. by P. Meystre, M.V. Scully (Plenum, New York, 1983)

    Google Scholar 

  2. A.I. Miller, Albert Einstein’s Special Theory of Relativity (Addison-Wesley, Reading, 1981); J.L. Heilbron, Max Planck (Hirzel, Stuttgart, 1988)

    Google Scholar 

  3. H.G. Kuhn, Atomic Spectra, 2nd edn. (Longman, London, 1971); I.I. Sobelman, Atomic Spectra and Radiative Transitions, 2nd edn. Springer Ser. Atoms Plasmas, vol. 12 (Springer, Berlin, 1992)

    Google Scholar 

  4. W.E. Lamb Jr., R.C. Retherford, Fine-structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241 (1947); and 79, 549 (1959)

    Article  ADS  Google Scholar 

  5. C. Salomon, J. Dalibard, W.D. Phillips, A. Clairon, S. Guellati, Laser cooling of cesium atoms below 3 μK. Europhys. Lett. 12, 683 (1990)

    Article  ADS  Google Scholar 

  6. H.J. Metcalf, P. van der Straaten, Laser Cooling and Trapping (Springer, Berlin, 1999)

    Book  Google Scholar 

  7. K. Sengstock, W. Ertmer, Laser manipulation of atoms. Adv. At. Mol. Opt. Phys. 35, 1 (1995)

    Article  ADS  Google Scholar 

  8. H. Frauenfelder, The Mössbauer Effect (Benjamin, New York, 1963); U. Gonser (ed.), Mössbauer Spectroscopy. Topics Appl. Phys., vol. 5 (Springer, Berlin, 1975)

    MATH  Google Scholar 

  9. J.L. Hall, Sub-Doppler spectroscopy: methane hyperfine spectroscopy and the ultimate resolution limit, in Laser Spectroscopy II, ed. by S. Haroche, J.C. Pebay-Peyroula, T.W. Hänsch, S.E. Harris. Lecture Notes Phys., vol. 43 (Springer, Berlin, 1975), p. 105

    Google Scholar 

  10. C.H. Bordé, Progress in understanding sub-Doppler-line shapes, in Laser Spectroscopy III, ed. by J.L. Hall, J.L. Carlsten. Springer Ser. Opt. Sci., vol. 7 (Springer, Berlin, 1977), p. 121

    Chapter  Google Scholar 

  11. S.N. Bagayev, A.E. Baklanov, V.P. Chebotayev, A.S. Dychkov, P.V. Pokuson, Superhigh resolution laser spectroscopy with cold particles, in Laser Spectroscopy VIII, ed. by W. Pearson, S. Svanberg. Springer Ser. Opt. Sci., vol. 55 (Springer, Berlin, 1987), p. 95

    Chapter  Google Scholar 

  12. J.C. Berquist, R.L. Barger, D.L. Glaze, High resolution spectroscopy of calcium atoms, in Laser Spectroscopy IV, ed. by H. Walther, K.W. Rothe. Springer Ser. Opt. Sci., vol. 21 (Springer, Berlin, 1979), p. 120; and Appl. Phys. Lett. 34, 850 (1979)

    Chapter  Google Scholar 

  13. U. Sterr, K. Sengstock, J.H. Müller, D. Bettermann, W. Ertmer, The magnesium Ramsey interferometer: applications and prospects. Appl. Phys. B 54, 341 (1992)

    Article  ADS  Google Scholar 

  14. B. Bobin, C. Bordé, C. Breaut, Vibration-rotation molecular constants for the ground state of \(\mathrm{SF_{6}}\) from saturated absorption spectroscopy. J. Mol. Spectrosc. 121, 91 (1987)

    Article  ADS  Google Scholar 

  15. E.A. Curtis, C.W. Oates, L. Hollberg, Observation of Large Atomic Recoil-Induced Asymmetrics in Cold Atomic Spectroscopy. J. Opt. Soc. Am. B 20, 977 (2003)

    Article  ADS  Google Scholar 

  16. T.W. Hänsch, A.L. Schawlow, Cooling of gases by laser radiation. Opt. Commun. 13, 68 (1975)

    Article  ADS  Google Scholar 

  17. W. Ertmer, R. Blatt, J.L. Hall, Some candidate atoms and ions for frequency standards research using laser radiative cooling techniques. Prog. Quantum Electron. 8, 249 (1984)

    Article  ADS  Google Scholar 

  18. W. Ertmer, R. Blatt, J.L. Hall, M. Zhu, Laser manipulation of atomic beam velocities: demonstration of stopped atoms and velocity reversal. Phys. Rev. Lett. 54, 996 (1985)

    Article  ADS  Google Scholar 

  19. R. Blatt, W. Ertmer, J.L. Hall, Cooling of an atomic beam with frequency-sweep techniques. Prog. Quantum Electron. 8, 237 (1984)

    Article  ADS  Google Scholar 

  20. W.O. Phillips, J.V. Prodan, H.J. Metcalf, Neutral atomic beam cooling, experiments at NBS, in NBS Special Publication, No. 653 (US Dept. of Commerce, Washington, 1983); and Phys. Lett. 49, 1149 (1982)

    Google Scholar 

  21. H. Metcalf, Laser cooling and magnetic trapping of neutral atoms, in Methods of Laser Spectroscopy, ed. by Y. Prior, A. Ben-Reuven, M. Rosenbluth (Plenum, New York, 1986), p. 33

    Chapter  Google Scholar 

  22. J.V. Prodan, W.O. Phillips, Chirping the light-fantastic? in Laser Cooled and Trapped Atoms. NBS Special Publication, No. 653 (US Dept. Commerce, Washington, 1983)

    Google Scholar 

  23. D. Sesko, C.G. Fam, C.E. Wieman, Production of a cold atomic vapor using diode-laser cooling. J. Opt. Soc. Am. B 5, 1225 (1988)

    Article  ADS  Google Scholar 

  24. R.N. Watts, C.E. Wieman, Manipulating atomic velocities using diode lasers. Opt. Lett. 11, 291 (1986)

    Article  ADS  Google Scholar 

  25. B. Sheeby, S.Q. Shang, R. Watts, S. Hatamian, H. Metcalf, Diode laser deceleration and collimation of a rubidium beam. J. Opt. Soc. Am. B 6, 2165 (1989)

    Article  ADS  Google Scholar 

  26. H. Metcalf, Magneto-optical trapping and its application to helium metastables. J. Opt. Soc. Am. B 6, 2206 (1989)

    Article  ADS  Google Scholar 

  27. I.C.M. Littler, St. Balle, K. Bergmann, The CW modeless laser: spectral control, performance data and build-up dynamics. Opt. Commun. 88, 514 (1992)

    Article  ADS  Google Scholar 

  28. J. Hoffnagle, Proposal for continuous white-light cooling of an atomic beam. Opt. Lett. 13, 307 (1991)

    Google Scholar 

  29. I.C.M. Littler, H.M. Keller, U. Gaubatz, K. Bergmann, Velocity control and cooling of an atomic beam using a modeless laser. Z. Phys. D 18, 307 (1991)

    Article  ADS  Google Scholar 

  30. R. Schieder, H. Walther, L. Wöste, Atomic beam deflection by the light of a tunable dye laser. Opt. Commun. 5, 337 (1972)

    Article  ADS  Google Scholar 

  31. I. Nebenzahl, A. Szöke, Deflection of atomic beams by resonance radiation using stimulated emission. Appl. Phys. Lett. 25, 327 (1974)

    Article  ADS  Google Scholar 

  32. J. Nellesen, J.M. Müller, K. Sengstock, W. Ertmer, Large-angle beam deflection of a laser cooled sodium beam. J. Opt. Soc. Am. B 6, 2149 (1989)

    Article  ADS  Google Scholar 

  33. S. Villani (ed.), Uranium Enrichment. Topics Appl. Phys., vol. 35 (Springer, Berlin, 1979)

    Google Scholar 

  34. C.E. Tanner, B.P. Masterson, C.E. Wieman, Atomic beam collimation using a laser diode with a self-locking power buildup-cavity. Opt. Lett. 13, 357 (1988)

    Article  ADS  Google Scholar 

  35. J. Dalibard, C. Salomon, A. Aspect, H. Metcalf, A. Heidmann, C. Cohen-Tannoudji, Atomic motion in a standing wave, in Laser Spectroscopy VIII, ed. by S. Svanberg, W. Persson. Springer Ser. Opt. Sci., vol. 55 (Springer, Berlin, 1987), p. 81

    Chapter  Google Scholar 

  36. St. Chu, J.E. Bjorkholm, A. Ashkin, L. Holberg, A. Cable, Cooling and trapping of atoms with laser light, in Methods of Laser Spectroscopy, ed. by Y. Prior, A. Ben-Reuven, M. Rosenbluth (Plenum, New York, 1986), p. 41

    Chapter  Google Scholar 

  37. T. Baba, I. Waki, Cooling and mass analysis of molecules using laser-cooled atoms. Jpn. J. Appl. Phys. 35, 1134 (1996)

    Article  Google Scholar 

  38. J.T. Bahns, P.L. Gould, W.C. Stwalley, Formation of Cold (T<1 K) Molecules. Adv. At. Mol. Opt. Phys. 42, 171 (2000)

    Article  ADS  Google Scholar 

  39. W.C. Stwalley, Making molecules at microKelvin, in Atomic and Molecular Beams, ed. by R. Campargue (Springer, Berlin, 2001), p. 105

    Chapter  Google Scholar 

  40. P. Pillet, F. Masnou-Seeuws, A. Crubelier, Molecular photoassociation and ultracold molecules, in Atomic and Molecular Beams, ed. by R. Campargue (Springer, Berlin, 2001), p. 113

    Chapter  Google Scholar 

  41. J.M. Doyle, B. Friedrich, J. Kim, D. Patterson, Buffer-gas loading of atoms and molecules into a magnetic trap. Phys. Rev. A 52, R2515 (1995)

    Article  ADS  Google Scholar 

  42. E. Lusovoj, J.P. Toennies, S. Grebenev et al., Spectroscopy of molecules and unique clusters in superfluid He-droplets, in Atomic and Molecular Beams, ed. by R. Campargue (Springer, Berlin, 2001), p. 775

    Google Scholar 

  43. S. Grebenev, M. Hartmann, M. Havenith, B. Sartakov, J.P. Toennies, A.F. Vilesov, The rotational spectrum of single OCS molecules in liquid \({}_{}^{4}\mathrm{He}\) droplets. J. Chem. Phys. 112, 4485 (2000)

    Article  ADS  Google Scholar 

  44. V.S. Letokhov, V.G. Minogin, B.D. Pavlik, Cooling and capture of atoms and molecules by a resonant light field. Sov. Phys. JETP 45, 698 (1977); and Opt. Commun. 19, 72 (1976)

    ADS  Google Scholar 

  45. V.S. Letokhov, B.D. Pavlik, Spectral line narrowing in a gas by atoms trapped in a standing light wave. Appl. Phys. 9, 229 (1976)

    Article  ADS  Google Scholar 

  46. A. Ashkin, J.P. Gordon, Cooling and trapping of atoms by resonance radiation pressure. Opt. Lett. 4, 161 (1979)

    Article  ADS  Google Scholar 

  47. J.P. Gordon, Radiation forces and momenta in dielectric media. Phys. Rev. A 8, 14 (1973)

    Article  ADS  Google Scholar 

  48. M.H. Mittelman, Introduction to the Theory of Laser-Atom Interaction (Plenum, New York, 1982)

    Book  Google Scholar 

  49. J.E. Bjorkholm, R.R. Freeman, A. Ashkin, D.B. Pearson, Transverse resonance radiation pressure on atomic beams and the influence of fluctuations, in Laser Spectroscopy IV, ed. by H. Walther, K.W. Rothe. Springer Ser. Opt. Sci., vol. 21 (Springer, Berlin, 1979), p. 49

    Chapter  Google Scholar 

  50. R. Grimm, M. Weidemüller, Y.B. Ovchinnikov, Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95 (2000)

    Article  ADS  Google Scholar 

  51. (a) J. Nellessen, J. Werner, W. Ertmer, Magneto-optical compression of a monoenergetic sodium atomic beam. Opt. Commun. 78, 300 (1990); (b) C. Monroe, W. Swann, H. Robinson, C. Wieman, Very cold trapped atoms in a vapor cell. Phys. Rev. Lett. 65, 1571 (1990)

    Google Scholar 

  52. A.M. Steane, M. Chowdhury, C.J. Foot, Radiation force in the magneto-optical trap. J. Opt. Soc. Am. B 9, 2142 (1992)

    Article  ADS  Google Scholar 

  53. J. Söding et al., Gravitational laser trap for atoms with evanescent wave cooling. Opt. Commun. 119, 652 (1995); Ochinnikov et al., Surface trap for Cs-atoms based on evanescent wave cooling. Phys. Rev. Lett. 79, 2225 (1997)

    Article  ADS  Google Scholar 

  54. A. Shevchenko, Atom traps on an evanescent wave mirror. PhD thesis, Helsinki University of Technology, 2004

    Google Scholar 

  55. M.R. de Saint Vincent, J.P. Brantut, Ch. Borde, A. Aspect, T. Bourdel, P. Bouye, A quantum trampoline for ultracold atoms. Europhys. Lett. 89, 10002 (2010)

    Article  Google Scholar 

  56. W. Hensel, PhD thesis, Faculty of Physics, LMU, München, 2000

    Google Scholar 

  57. Feynman Lectures on Physics I (Addison-Wesley, Reading, 1965)

    Google Scholar 

  58. S. Stenholm, The semiclassical theory of laser cooling. Rev. Mod. Phys. 58, 699 (1986)

    Article  ADS  Google Scholar 

  59. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, C. Cohen-Tannoudji, Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. J. Opt. Soc. Am. B 6, 2112 (1989)

    Article  ADS  Google Scholar 

  60. J. Dalibard, C. Cohen-Tannoudji, Laser cooling below the Doppler limit by polarization gradients: simple theoretical model. J. Opt. Soc. Am. B 6, 2023 (1989); C. Cohen-Tannoudji, New laser cooling mechanism, in Laser Manipulation of Atoms and Ions, ed. by A. Arimondo, W.D. Phillips, F. Strumia (North-Holland, Amsterdam, 1992), p. 99

    Article  ADS  Google Scholar 

  61. D.S. Weiss, E. Riis, Y. Shery, P.J. Ungar, St. Chu, Optical molasses and multilevel atoms: experiment. J. Opt. Soc. Am. B 6, 2072 (1989)

    Article  ADS  Google Scholar 

  62. P.J. Ungar, D.S. Weiss, E. Riis, St. Chu, Optical molasses and multilevel atoms: theory. J. Opt. Soc. Am. B 6, 2058 (1989)

    Article  ADS  Google Scholar 

  63. C. Cohen-Tannoudji, W.D. Phillips, New mechanisms for laser cooling. Phys. Today 43, 33 (1990)

    Article  Google Scholar 

  64. S. Chu, C. Wieman (eds.), Laser Cooling and Trapping. J. Opt. Soc. Am. B 6 (1989)

    Google Scholar 

  65. E. Arimondo, W.D. Phillips, F. Strumia (eds.), Laser Manipulation of Atoms and Ions, Varenna Summerschool, 1991 (North-Holland, Amsterdam, 1992)

    Google Scholar 

  66. W. Phillips (ed.), Laser-cooled and Trapped Ions. Spec. Publ., No. 653 (National Bureau of Standards, Washington, 1984); E. Arimondo, W. Phillips, F. Strumia (eds.), Laser Cooling and Trapping of Neutral Atoms. Proc. Int. School of Physics Enrico Fermi, Course CXVIII (North Holland, Amsterdam, 1992)

    Google Scholar 

  67. S. Martelucci (ed.), Bose–Einstein Condensates and Atom Laser (Kluwer Academic, New York, 2000); A. Griffin, D.W. Snoke, S. Stringari (eds.), Bose–Einstein Condensation (Cambridge Univ. Press, Cambridge, 1995)

    Google Scholar 

  68. W. Ketterle, N.J. van Druten, Evaporative Cooling. Adv. At. Mol. Opt. Phys. 37, 181 (1996)

    Article  ADS  Google Scholar 

  69. W. Ketterle, N.J. van Druten, Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys. 37, 181 (1996)

    Article  ADS  Google Scholar 

  70. I. Bloch, T.W. Hänsch, T. Esslinger, Atom Laser with a cw output coupler. Phys. Rev. Lett. 82, 3008 (1999); S. Martelucci, A.N. Chester, A. Aspect, M. Inguscio (eds), Bose–Einstein Condensates and Atom Lasers (Springer, Berlin, 2000)

    Article  ADS  Google Scholar 

  71. P. Julienne, Cold binary collisions in a Light Field. J. Res. Natl. Inst. Stand. Technol. 101, 487 (1996)

    Article  Google Scholar 

  72. E. Tiesinga et al., A spectroscopic method for determination of scattering length of sodium atom collisions. J. Res. Natl. Inst. Stand. Technol. 101, 505 (1996)

    Article  Google Scholar 

  73. S.E. Pollack et al., Collective Excitation of a Bose–Einstein condensate by modulation of the atomic scattering length. Phys. Rev. A 81, 053627 (2010)

    Article  ADS  Google Scholar 

  74. W. Ketterle, The atom laser. http://cua.mit.edu/ketterle_group/projects_1997/atomlaser

  75. V.S. Letokhov, B.D. Pavlik, Spectral line narrowing in a gas by in a standing light wave. Appl. Phys. 9, 229 (1976)

    Article  ADS  Google Scholar 

  76. E.A. Burt et al., Coherence, correlations, and collisions: what one learns about Bose-Einstein condensates from their decay. Phys. Rev. A 79, 337 (1997)

    ADS  Google Scholar 

  77. F. Schreck et al., Bose–Einstein condensation of 86Sr. Phys. Rev. A 82, 011608(R) (2010)

    Article  ADS  Google Scholar 

  78. I. Bloch, Th.W. Hänsch, T. Esslinger, Atom laser with cw output coupler. Phys. Rev. Lett. 82, 3008 (1999)

    Article  ADS  Google Scholar 

  79. J. Klärs, J. Schmitt, T. Damm, F. Vewinger, M. Weitz, Bose–Einstein condensation of paraxial light. Proc. SPIE 8600, 86000L (2013)

    Article  Google Scholar 

  80. W. Ketterle, Workshop on ultracold Fermi-gases, Levico, 2005

    Google Scholar 

  81. C.A. Regal, M. Greiner, D.S. Jin, Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett. 92, 040403 (2004)

    Article  ADS  Google Scholar 

  82. I. Bloch, Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23–30 (2005)

    Article  Google Scholar 

  83. A. Crubellier, O. Dulieu, F. Masnou-Seeuws, H. Knöckel, E. Tiemann, Simple determination of scattering length using observed bound levels at the ground state asymptote. Europhys. J. D 6, 211 (1999)

    ADS  Google Scholar 

  84. S. Stellmer, M.K. Tey, R. Grimm, F. Schreck, Observation of Bose–Einstein condensation of molecules. Phys. Rev. A 82, 041602 (2010)

    Article  ADS  Google Scholar 

  85. F. Lang, K. Winkler, C. Strauss, R. Grimm, J. Hecker Denschlag, Ultracold triplet molecules in the rovibrational ground state. Phys. Rev. Lett. 101, 133005 (2008). arXiv:0809.0061

    Article  ADS  Google Scholar 

  86. K. Winkler, F. Lang, G. Thalhammer, P.v.d. Straten, R. Grimm, J. Hecker Denschlag, Coherent optical transfer of Feshbach molecules to a lower vibrational state. Phys. Rev. Lett. 98, 043201 (2007). cond-mat/0611222

    Article  ADS  Google Scholar 

  87. S. Jochim et al., Bose–Einstein condensation of molecules. Science 301, 1510 (2003); M. Bartenstein et al., Crossover from a molecular Bose–Einstein condensate to degenerate Fermi gas. Phys. Rev. Lett. 92, 120401 (2004)

    Article  ADS  Google Scholar 

  88. M. Mark, T. Kraemer, J. Harbig, C. Chin, H.C. Nägerl, R. Grimm, Efficient creation of molecules from a cesium Bose–Einstein condensate. Europhys. Lett. 69, 706 (2005)

    Article  ADS  Google Scholar 

  89. C. Chim et al., Observation of Feshbach-like resonances in collisions between ultra cold molecules. Phys. Rev. Lett. 94, 123201 (2005)

    Article  ADS  Google Scholar 

  90. (a) M. Mark et al., Spectroscopy of ultra cold trapped Cs-Feshbach molecules. Phys. Rev. A 76, 033610 (2007); (b) J. Weiner, Advances in ultracold collisions. Adv. At. Mol. Opt. Phys. 35, 332 (1995); (c) T. Walker, P. Feng, Measurements of collisions between laser-cooled atoms. Adv. At. Mol. Opt. Phys. 34, 125 (1994)

    Google Scholar 

  91. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415(6867), 39–44 (2002). doi:10.1038/415039a

    Article  ADS  Google Scholar 

  92. M. Atala, M. Aidelsburger, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Observation of the Meissner effect with ultracold atoms in bosonic ladders. arXiv:1402.0819

  93. H. Weickenmeier, U. Diemer, W. Demtröder, M. Broyer, Hyperfine-interaction between the singlet and triplet ground states and \(\mathrm{Cs_{2}}\). Chem. Phys. Lett. 124, 470 (1986)

    Article  ADS  Google Scholar 

  94. K. Rubin, M.S. Lubell, A proposed study of photon statistics in fluorescence through high resolution measurements of the transverse deflection of an atomic beam, in Laser Cooled and Trapped Atoms. NBS Special Publ., No. 653 (1983), p. 119

    Google Scholar 

  95. Y.Z. Wang, W.G. Huang, Y.D. Cheng, L. Liu, Test of photon statistics by atomic beam deflection, in Laser Spectroscopy VII, ed. by T.W. Hänsch, Y.R. Shen. Springer Ser. Opt. Sci., vol. 49 (Springer, Berlin, 1985), p. 238

    Chapter  Google Scholar 

  96. V.M. Akulin, F.L. Kien, W.P. Schleich, Deflection of atoms by a quantum field. Phys. Rev. A 44, R1462 (1991)

    Article  ADS  Google Scholar 

  97. W. Ertmer, S. Penselin, Cooled atomic beams for frequency standards. Metrologia 22, 195 (1986); C. Salomon, Laser cooling of atoms and ion trapping for frequency standards, in Metrology at the Frontiers of Physics and Technology, ed. by L. Crovini, T.J. Quinn (North-Holland, Amsterdam, 1992), p. 405

    Article  ADS  Google Scholar 

  98. J.L. Hall, M. Zhu, P. Buch, Prospects for using laser prepared atomic fountains for optical frequency standards applications. J. Opt. Soc. Am. B 6, 2194 (1989)

    Article  ADS  Google Scholar 

  99. E.D. Commins, Electric dipole moments of leptons. Adv. At. Mol. Opt. Phys. 40, 1 (1999)

    Article  ADS  Google Scholar 

  100. F.M.H. Crompfoets, H.L. Bethlem, R.T. Jongma, G. Meyer, A prototype storage ring for neutral molecules. Nature 411, 174 (2001)

    Article  ADS  Google Scholar 

  101. B. Friedrich, Slowing of supersonically cooled atoms and molecules by time-varying nonresonant dipole forces. Phys. Rev. A 61, 025403 (2000)

    Article  ADS  Google Scholar 

  102. W. Paul, M. Raether, Das elektrische Massenfilter. Z. Phys. 140, 262 (1955); W. Paul, Elektromagnetische Käfige für geladene und neutrale Teilchen. Phys. Bl. 46, 227 (1990)

    Article  ADS  Google Scholar 

  103. E. Fischer, Die dreidimensionale Stabilisierung von Ladungsträgern in einem Vierpolfeld. Z. Phys. 156, 1 (1959)

    Article  ADS  Google Scholar 

  104. G.H. Dehmelt, Radiofrequency spectroscopy of stored ions. Adv. At. Mol. Phys. 3, 53 (1967); and 5, 109 (1969)

    Article  ADS  Google Scholar 

  105. J.F. Todd, R.E. March, Quadrupole Ion Trap, 2nd edn. (Wiley, New York, 2005)

    Google Scholar 

  106. R.E. Drullinger, D.J. Wineland, Laser cooling of ions bound to a penning trap. Phys. Rev. Lett. 40, 1639 (1978)

    Article  ADS  Google Scholar 

  107. E.T. Whittacker, S.N. Watson, A Course of Modern Analysis (Cambridge Univ. Press, Cambridge, 1963); J. Meixner, F.W. Schaefke, Mathieusche Funktionen und Sphäroidfunktionen (Springer, Berlin, 1954)

    Google Scholar 

  108. P.E. Toschek, W. Neuhauser, Spectroscopy on localized and cooled ions, in Atomic Physics, vol. 7, ed. by D. Kleppner, F.M. Pipkin (Plenum, New York, 1981)

    Google Scholar 

  109. W. Neuhauser, M. Hohenstatt, P.E. Toschek, H.G. Dehmelt, Visual observation and optical cooling of electrodynamically contained ions. Appl. Phys. 17, 123 (1978)

    Article  ADS  Google Scholar 

  110. Y. Stalgies, I. Siemens, B. Appasamy, T. Altevogt, P.E. Tuschek, The spectrum of single-atom resonances fluorescence. Europhys. Lett. 35, 259 (1996)

    Article  ADS  Google Scholar 

  111. P.E. Toschek, W. Neuhauser, Einzelne Ionen für die Doppler-freie Spektroskopie. Phys. Bl. 36, 1798 (1980)

    Article  Google Scholar 

  112. T. Sauter, H. Gilhaus, W. Neuhauser, R. Blatt, P.E. Toschek, Kinetics of a single trapped ion. Europhys. Lett. 7, 317 (1988)

    Article  ADS  Google Scholar 

  113. R.E. Drullinger, D.J. Wineland, Laser cooling of ions bound to a Penning trap, in Laser Spectroscopy IV, ed. by H. Walther, K.W. Rother. Springer Ser. Opt. Sci., vol. 21 (Springer, Berlin, 1979), p. 66; and Phys. Rev. Lett. 40, 1639 (1978)

    Chapter  Google Scholar 

  114. D.J. Wineland, W.M. Itano, Laser cooling of atoms. Phys. Rev. A 20, 1521 (1979)

    Article  ADS  Google Scholar 

  115. W. Neuhauser, M. Hohenstatt, P.E. Toschek, H. Dehmelt, Optical sideband cooling of visible atom cloud confined in a parabolic well. Phys. Rev. Lett. 41, 233 (1978)

    Article  ADS  Google Scholar 

  116. H.G. Dehmelt, Proposed 1014Δν<ν laser fluorescence spectroscopy on a \(\mathrm{T1^{+}}\) mono-ion oscillator. Bull. Am. Phys. 20, 60 (1975)

    Google Scholar 

  117. P.E. Toschek, Absorption by the numbers: recent experiments with single trapped and cooled ions. Phys. Scr. T 23, 170 (1988)

    Article  ADS  Google Scholar 

  118. T. Sauter, R. Blatt, W. Neuhauser, P.E. Toschek, Quantum jumps in a single ion. Phys. Scr. 22, 128 (1988); and Opt. Commun. 60, 287 (1986)

    Article  Google Scholar 

  119. W.M. Itano, J.C. Bergquist, R.G. Hulet, D.J. Wineland, The observation of quantum jumps in \(\mathrm{Hg^{+}}\), in Laser Spectroscopy VIII, ed. by S. Svanberg, W. Persson. Springer Ser. Opt. Sci., vol. 55 (Springer, Berlin, 1987), p. 117

    Chapter  Google Scholar 

  120. F. Diedrich, H. Walther, Nonclassical radiation of a single stored ion. Phys. Rev. Lett. 58, 203 (1987)

    Article  ADS  Google Scholar 

  121. R. Blümel, J.M. Chen, E. Peik, W. Quint, W. Schleich, Y.R. Chen, H. Walther, Phase transitions of stored laser-cooled ions. Nature 334, 309 (1988)

    Article  ADS  Google Scholar 

  122. F. Diedrich, E. Peik, J.M. Chen, W. Quint, H. Walther, Ionenkristalle und Phasenübergänge in einer Ionenfalle. Phys. Bl. 44, 12 (1988)

    Article  Google Scholar 

  123. F. Diedrich, E. Peik, J.M. Chen, W. Quint, H. Walther, Observation of a phase transition of stored laser-cooled ions. Phys. Rev. Lett. 59, 2931 (1987)

    Article  ADS  Google Scholar 

  124. R. Blümel, C. Kappler, W. Quint, H. Walther, Chaos and order of laser-cooled ions in a Paul trap. Phys. Rev. A 40, 808 (1989)

    Article  ADS  Google Scholar 

  125. J. Javamainen, Laser cooling of trapped ion-clusters. J. Opt. Soc. Am. B 5, 73 (1988)

    Article  ADS  Google Scholar 

  126. D.J. Wineland, J.C. Bergquist, W.M. Itano, J.J. Bollinger, C.H. Manney, Atomic-ion Coulomb clusters in an ion trap. Phys. Rev. Lett. 59, 2935 (1987); W. Quint, Chaos und Ordnung von lasergekühlten Ionen in einer Paulfalle. Dissertation, MPQ-Berichte 150, MPQ für Quantenoptik, Garching, 1990

    Article  ADS  Google Scholar 

  127. J.N. Tan, J.J. Bollinger, B. Jelenkovic, D.J. Wineland, Long-Range Order in Laser-Cooled, Atomic-Ion Wigner Crystals Observed by Bragg-Scattering. Phys. Rev. Lett. 75, 4198 (1995)

    Article  ADS  Google Scholar 

  128. Th.V. Kühl, Storage ring laser spectroscopy. Adv. At. Mol. Opt. Phys. 40, 113 (1999)

    Article  ADS  Google Scholar 

  129. H. Poth, Applications of electron cooling in atomic, nuclear and high energy physics. Nature 345, 399 (1990)

    Article  ADS  Google Scholar 

  130. (a) J.P. Schiffer, Layered structure in condensed cold one-component plasma confined in external fields. Phys. Rev. Lett. 61, 1843 (1988); (b) I. Waki, S. Kassner, G. Birkl, H. Walther, Observation of ordered structures of laser-cooled ions in a quadrupole storage ring. Phys. Rev. Lett. 68, 2007 (1992)

    Google Scholar 

  131. J.S. Hangst, M. Kristensen, J.S. Nielsen, O. Poulsen, J.P. Schiffer, P. Shi, Laser cooling of a stored ion beam to 1 mK. Phys. Rev. Lett. 67, 1238 (1991)

    Article  ADS  Google Scholar 

  132. U. Schramm et al., Observation of laser-induced recombination in merged electron and proton beams. Phys. Rev. Lett. 67, 22 (1991)

    Article  ADS  Google Scholar 

  133. P. Schindler, D. Nigg, T. Monz, J.T. Barreiro, E. Martinez, S.X. Wang, S. Quint, M.F. Brandl, V. Nebendahl, C.F. Roos, M. Chwalla, M. Hennrich, R. Blatt, A quantum information processor with trapped ions. New J. Phys. 15, 123012 (2013). arXiv:1308.3096; R. Blatt, Ionen in Reih und Glied. Quantencomputer mit gespeicherten Ionen. Phys. J. 4(11), 37 (2005)

    Article  ADS  Google Scholar 

  134. J.I. Cirac, P. Zoller, Qubits, Gatter and register. Phys. J. 4(11), 30 (2005)

    Google Scholar 

  135. B. Lanyon et al., Universal digital quantum simulations with trapped ions. Science 334, 57 (2011)

    Article  ADS  Google Scholar 

  136. J. Stolze, D. Suter, Quantum Computing: A Short Course from Theory to Experiment (Wiley/VCH, Weinheim, 2008)

    MATH  Google Scholar 

  137. B.P. Lanyon, P. Jurcevic, M. Zwerger, C. Hempel, E.A. Martinez, W. Dür, H.J. Briegel, R. Blatt, C.F. Roos, Measurement-based quantum computation with trapped ions. Phys. Rev. Lett. 111, 210501 (2013). arXiv:1308.5102

    Article  ADS  Google Scholar 

  138. J.S. Pedernales, R. Di Candia, P. Schindler, T. Monz, M. Hennrich, J. Casanova, E. Solano, Entanglement measures in ion-trap quantum simulators without full tomography. arXiv:1402.4409

  139. T.C. English, J.C. Zorn, Molecular beam spectroscopy, in Methods of Experimental Physics, vol. 3, ed. by D. Williams (Academic Press, New York, 1974)

    Google Scholar 

  140. I.I. Rabi, Zur Methode der Ablenkung von Molekularstrahlen. Z. Phys. 54, 190 (1929)

    Article  ADS  Google Scholar 

  141. N.F. Ramsey, Molecular Beams, 2nd edn. (Clarendon, Oxford, 1989)

    Google Scholar 

  142. J.C. Bergquist, S.A. Lee, J.L. Hall, Ramsey fringes in saturation spectroscopy, in Laser Spectroscopy III, ed. by J.L. Hall, J.L. Carlsten (Springer, Berlin, 1977)

    Google Scholar 

  143. Y.V. Baklanov, B.Y. Dubetsky, V.P. Chebotayev, Nonlinear Ramsey resonance in the optical region. Appl. Phys. 9, 171 (1976)

    Article  ADS  Google Scholar 

  144. V.P. Chebotayev, The method of separated optical fields for two level atoms. Appl. Phys. 15, 219 (1978)

    Article  ADS  Google Scholar 

  145. C. Bordé, Sur les franges de Ramsey en spectroscopie sans élargissement Doppler. C.R. Acad. Sci., Sér. B 282, 101 (1977)

    Google Scholar 

  146. S.A. Lee, J. Helmcke, J.L. Hall, P. Stoicheff, Doppler-free two-photon transitions to Rydberg levels. Opt. Lett. 3, 141 (1978)

    Article  ADS  Google Scholar 

  147. S.A. Lee, J. Helmcke, J.L. Hall, High-resolution two-photon spectroscopy of Rb Rydberg levels, in Laser Spectroscopy IV, ed. by H. Walther, K.W. Rothe. Springer Ser. Opt. Sci., vol. 21 (Springer, Berlin, 1979), p. 130

    Chapter  Google Scholar 

  148. Y.V. Baklanov, V.P. Chebotayev, B.Y. Dubetsky, The resonance of two-photon absorption in separated optical fields. Appl. Phys. 11, 201 (1976)

    Article  ADS  Google Scholar 

  149. S.N. Bagayev, V.P. Chebotayev, A.S. Dychkov, Continuous coherent radiation in methane at λ=3.39 μm in spatially separated fields. Appl. Phys. 15, 209 (1978)

    Article  ADS  Google Scholar 

  150. C.J. Bordé, Density matrix equations and diagrams for high resolution nonlinear laser spectroscopy: application to Ramsey fringes in the optical domain, in Advances in Laser Spectroscopy, ed. by F.T. Arrecchi, F. Strumia, H. Walther (Plenum, New York, 1983), p. 1

    Chapter  Google Scholar 

  151. J.C. Bergquist, S.A. Lee, J.L. Hall, Saturated absorption with spatially separated laser fields. Phys. Rev. Lett. 38, 159 (1977)

    Article  ADS  Google Scholar 

  152. J. Helmcke, D. Zevgolis, B.U. Yen, Observation of high contrast ultra narrow optical Ramsey fringes in saturated absorption utilizing four interaction zones of travelling waves. Appl. Phys. B 28, 83 (1982)

    Google Scholar 

  153. C.J. Bordé, C. Salomon, S.A. Avrillier, A. Van Lerberghe, C. Breant, D. Bassi, G. Scoles, Optical Ramsey fringes with travelling waves. Phys. Rev. A 30, 1836 (1984)

    Article  ADS  Google Scholar 

  154. J.C. Bergquist, R.L. Barger, P.J. Glaze, High resolution spectroscopy of calcium atoms, in Laser Spectroscopy IV, ed. by H. Walther, K.W. Rothe. Springer Ser. Opt. Sci., vol. 21 (Springer, Berlin, 1979), p. 120

    Chapter  Google Scholar 

  155. J. Helmcke, J. Ishikawa, F. Riehle, High contrast high resolution single component Ramsey fringes in Ca, in Frequency Standards and Metrology, ed. by A. De Marchi (Springer, Berlin, 1989), p. 270

    Chapter  Google Scholar 

  156. A. Huber, B. Gross, M. Weitz, Th.W. Hänsch, Two-photon optical Ramsey spectroscopy of the 1S–2S transition in atomic hydrogen. Phys. Rev. A 58, R2631 (1998); B. Gross, A. Huber, M. Niering, M. Weitz, T.W. Hänsch, Optical Ramsey spectroscopy of atomic hydrogen. Europhys. Lett. 44, 186

    Article  ADS  Google Scholar 

  157. M. Inguscio, L. Fallini, Atomic Physics: Precise Measurements and Ultracold Matter (Oxford University Press, Oxford, 2013)

    Book  Google Scholar 

  158. F. Riehle, Frequency standards: Basics and Applications (Wiley/VCH, Weinheim, 2005)

    Google Scholar 

  159. M.A. Kasevich, Atomic Interferometry in an Atomic Fountain (Stanford Dep. of Appl. Phys., Stanford, 1992)

    Google Scholar 

  160. A. Peters, K.Y. Chunb, S. Chu, High Precision gravity measurements using an atomic interferometer. Metrologia 38, 25 (2001)

    Article  ADS  Google Scholar 

  161. J.B. Fixler, G.T. Foster, J.M. McGuirk, M.A. Kasevich, Atom Interferometer Measurement of the Newtonian Constant of Gravity. Science 315, 74 (2007)

    Article  ADS  Google Scholar 

  162. J. Stuhler, M. Fattori, T. Petelski, E.M. Tino, MAGIA-using atom interferometry to determine the Newtonian gravitational constant. J. Opt. B, Quantum Semiclass. Opt. 5, 75 (2003)

    Article  ADS  MATH  Google Scholar 

  163. F. Riehle, J. Ishikawa, J. Helmcke, Suppression of recoil component in nonlinear Doppler-free spectroscopy. Phys. Rev. Lett. 61, 2092 (1988)

    Article  ADS  Google Scholar 

  164. J. Mlynek, V. Balykin, P. Meystere (guest eds.), Atom interferometry. Appl. Phys. B 54, 319–368 (1992); C.S. Adams, M. Siegel, J. Mlynek, Atom optics. Phys. Rep. 240, 144 (1994)

    Google Scholar 

  165. P. Bermann (ed.), Atom Interferometry (Academic Press, San Diego, 1997); J. Arlt, G. Birkl, F.M. Rasel, W. Ertmer, Atom optics, guided atoms, and atom interferometry. Adv. At. Mol. Opt. Phys. 50, 55–89 (2005)

    Google Scholar 

  166. O. Carnal, J. Mlynek, Young’s double slit experiment with atoms: a simple atom interferometer. Phys. Rev. Lett. 66, 2689 (1991)

    Article  ADS  Google Scholar 

  167. D.W. Keith, C.R. Ekstrom, Q.A. Turchette, D.E. Pritchard, An interferometer for atoms. Phys. Rev. Lett. 66, 2693 (1991)

    Article  ADS  Google Scholar 

  168. http://www.physics.arizona.edu/~cronin/Research/Introduction/IFMdescription.html

  169. C.J. Bordé, Atomic interferometry with internal state labelling. Phys. Lett. A 140, 10 (1989)

    Article  ADS  Google Scholar 

  170. F. Riehle, A. Witte, T. Kisters, J. Helmcke, Interferometry with Ca atoms. Appl. Phys. B 54, 333 (1992)

    Article  ADS  Google Scholar 

  171. M. Kasevich, S. Chu, Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. Appl. Phys. B 54, 321 (1992)

    Article  ADS  Google Scholar 

  172. F. Diedrich, J. Krause, G. Rempe, M.O. Scully, H. Walther, Laser experiments on single atoms and the test of basic physics. Physica B 151, 247 (1988); and IEEE J. Quantum Electron. 24, 1314 (1988)

    Article  Google Scholar 

  173. S. Haroche, J.M. Raimond, Radiative properties of Rydberg states in resonant cavities. Adv. At. Mol. Phys. 20, 347 (1985)

    Article  ADS  Google Scholar 

  174. G. Rempe, H. Walther, The one-atom maser and cavity quantum electrodynamics, in Methods of Laser Spectroscopy, ed. by Y. Prior, A. Ben-Reuven, M. Rosenbluth (Plenum, New York, 1986)

    Google Scholar 

  175. H. Walther, Single-atom oscillators. Europhys. News 19, 105 (1988); H. Walther, One atom maser and other experiments on cavity quantum electrodynamics. Phys. Usp. 39, 727 (1996)

    Google Scholar 

  176. G. Rempe, M.O. Scully, H. Walther, The one-atom maser and the generation of nonclassical light, in Proc. ICAP 12, Ann Arbor (1990)

    Google Scholar 

  177. P. Meystre, G. Rempe, H. Walther, Very low temperature behaviour of a micromaser. Opt. Lett. 13, 1078 (1988)

    Article  ADS  Google Scholar 

  178. G. Rempe, H. Walther, Sub-Poissonian atomic statistics in a micromaser. Phys. Rev. A 42, 1650 (1990)

    Article  ADS  Google Scholar 

  179. B.T. Varcoe, S. Brattke, M. Weidinger, H. Walther, Preparing pure photon number states of the radiation field. Nature 403, 743 (2000)

    Article  ADS  Google Scholar 

  180. M. Marrocco, M. Weidinger, R.T. Sang, H. Walther, Quantum electrodynamic shifts of Rydberg energy levels between two parallel plates. Phys. Rev. Lett. 81, 5784 (1998)

    Article  ADS  Google Scholar 

  181. H. Metcalf, W. Phillips, Time resolved subnatural width spectroscopy. Opt. Lett. 5, 540 (1980)

    Article  ADS  Google Scholar 

  182. J.N. Dodd, G.W. Series, Time-resolved fluorescence spectroscopy, in Progr. Atomic Spectroscopy A, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York, 1978)

    Google Scholar 

  183. S. Schenk, R.C. Hilburn, H. Metcalf, Time resolved fluorescence from Ba and Ca, excited by a pulsed tunable dye laser. Phys. Rev. Lett. 31, 189 (1973)

    Article  ADS  Google Scholar 

  184. H. Figger, H. Walther, Optical resolution beyond the natural linewidth: a level crossing experiment on the \(3 \, {}^{2}_{}P_{3/2} \) level of sodium using a tunable dye laser. Z. Phys. 267, 1 (1974)

    Article  ADS  Google Scholar 

  185. F. Shimizu, K. Umezu, H. Takuma, Observation of subnatural linewidth in Na \(\mathrm{D_{2}}\)-lines. Phys. Rev. Lett. 47, 825 (1981)

    Article  ADS  Google Scholar 

  186. G. Bertuccelli, N. Beverini, M. Galli, M. Inguscio, F. Strumia, Subnatural coherence effects in saturation spectroscopy using a single travelling wave. Opt. Lett. 10, 270 (1985)

    Article  ADS  Google Scholar 

  187. P. Meystre, M.O. Scully, H. Walther, Transient line narrowing: a laser spectroscopic technique yielding resolution beyond the natural linewidth. Opt. Commun. 33, 153 (1980)

    Article  ADS  Google Scholar 

  188. A. Guzman, P. Meystre, M.O. Scully, Subnatural spectroscopy, in Adv. Laser Spectroscopy, ed. by F.T. Arecchi, F. Strumia, H. Walther (Plenum, New York, 1983), p. 465; D.P. O’Brien, P. Meystre, H. Walther, Subnatural linewidth in atomic spectroscopy. Adv. At. Mol. Phys. 21, 1 (1985)

    Chapter  Google Scholar 

  189. V.S. Letokhov, V.P. Chebotayev, Nonlinear Laser Spectroscopy. Springer Ser. Opt. Sci., vol. 4 (Springer, Berlin, 1977)

    Google Scholar 

  190. R.P. Hackel, S. Ezekiel, Observation of subnatural linewidths by two-step resonant scattering in \(\mathrm{I_{2}}\)-vapor. Phys. Rev. Lett. 42, 1736 (1979)

    Article  ADS  Google Scholar 

  191. H. Weickenmeier, U. Diemer, W. Demtröder, M. Broyer, Hyperfine interaction between the singlet and triplet ground states of \(\mathrm{Cs_{2}}\). Chem. Phys. Lett. 124, 470 (1986)

    Article  ADS  Google Scholar 

  192. E.R. Cohen, B.N. Taylor, The 1986 CODATA recommended values of the fundamental physical constants. J. Phys. Chem. Ref. Data 17, 1795 (1988)

    Article  ADS  Google Scholar 

  193. F. Bayer-Helms, Neudefinition der Basiseinheit Meter im Jahr 1983. Phys. Bl. 39, 307 (1983); F. Bayer-Helms, Documents concerning the new definition of the metre. Metrologia 19, 163 (1984)

    Article  Google Scholar 

  194. K.M. Baird, Frequency measurements of optical radiation. Phys. Today 36, 1 (1983)

    Article  Google Scholar 

  195. K.M. Evenson, D.A. Jennings, F.R. Peterson, J.S. Wells, Laser frequency measurements: a review, limitations, extension to 197 THz (1.5 μm), in Laser Spectroscopy III, ed. by J.L. Hall, J.L. Carlsten. Springer Ser. Opt. Sci., vol. 7 (Springer, Berlin, 1977); D.A. Jennings, F.R. Peterson, K.M. Evenson, Direct frequency measurement of the 260 THz (1.15 μm) \({}_{}^{20}\mathrm{Ne}\) laser: and beyond, in Laser Spectroscopy IV, ed. by H. Walther, K.W. Rothe. Springer Ser. Opt. Sci., vol. 21 (Springer, Berlin, 1979), p. 39

    Chapter  Google Scholar 

  196. K.M. Evenson, M. Inguscio, D.A. Jennings, Point contact diode at laser frequencies. J. Appl. Phys. 57, 956 (1985)

    Article  ADS  Google Scholar 

  197. L.R. Zink, M. Prevedelli, K.M. Evenson, M. Inguscio, High resolution far infrared spectroscopy, in Applied Laser Spectroscopy, ed. by M. Inguscio, W. Demtröder (Plenum, New York, 1991), p. 141

    Google Scholar 

  198. H.V. Daniel, B. Maurer, M. Steiner, A broadband Schottky point contact mixer for visible laser light and microwave harmonics. J. Appl. Phys. B 30, 189 (1983)

    Article  ADS  Google Scholar 

  199. H.P. Roeser, R.V. Titz, G.W. Schwaab, M.F. Kimmit, Current-frequency characteristics of submicron GaAs Schottky barrier diodes with femtofarad capacitances. J. Appl. Phys. 72, 3194 (1992)

    Article  ADS  Google Scholar 

  200. (a) B.G. Whitford, Phase-locked frequency chains to 130 THz at NRC, in Frequency Standards and Metrology, ed. by A. De Marchi (Springer, Berlin, 1989); (b) T.W. Hänsch, High resolution spectroscopy of hydrogen, in The Hydrogen Atom, ed. by G.F. Bussani, M. Inguscio, T.W. Hänsch (Springer, Berlin, 1989); (c) S.G. Karshenboim, F.S. Pavone, G.F. Bussani, M. Inguscio, T.W. Hänsch (eds.), The Hydrogen Atom (Springer, Berlin, 2001)

    Google Scholar 

  201. J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, T.W. Hänsch, Phase coherent vacuum ultraviolet to radiofrequency comparison with a mode-locked laser. Phys. Rev. Lett. 84, 3232 (2000)

    Article  ADS  Google Scholar 

  202. R. Holzwarth et al., Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264 (2000); L.S. Ma et al., Optical frequency synthesis and comparison with uncertainty at the 10−19 level. Science 303, 1843 (2004); T.W. Hänsch, Frequency Comb project. http://www.mpq.de/~haensch/comb/research/combs.html

    Article  ADS  Google Scholar 

  203. J.L. Hall, Defining and measuring optical frequencies. Nobel lecture, December 2005. Available at http://nobelprize.org/physics/laureates/2005/hall-lecture.html; M. Fischer et al., New limits on the drift of fundamental constants from laboratory measurements. Phys. Rev. Lett. 92, 230802 (2004)

  204. S.A. Diddams, T.W. Hänsch et al., Direct link between microwave and optical frequencies with a 300 THz femtosecond pulse. Phys. Rev. Lett. 84, 5102 (2000); M.C. Stove et al., Direct frequency comb spectroscopy. Adv. At. Mol. Opt. Phys. 55, 1 (2008)

    Article  ADS  Google Scholar 

  205. T. Udem, R. Holzwarth, T.W. Hänsch, Optical frequency metrology. Nature 416, 233–237 (2002)

    Article  ADS  Google Scholar 

  206. B. Bernhardt et al., Vacuum ultraviolet frequency comb generated by a femtosecond enhancement cavity in the visible. Opt. Lett. 37, 503 (2012)

    Article  ADS  Google Scholar 

  207. R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1973)

    MATH  Google Scholar 

  208. H. Gerhardt, H. Welling, A. Güttner, Measurements of laser linewidth due to quantum phase and quantum amplitude noise above and below threshold. Z. Phys. 253, 113 (1972); M. Zhu, J.L. Hall, Stabilization of optical phase/frequency of a laser system. J. Opt. Soc. Am. B 10, 802 (1993)

    Article  ADS  Google Scholar 

  209. H.A. Bachor, P.J. Manson, Practical implications of quantum noise. J. Mod. Opt. 37, 1727 (1990); H.A. Bachor, P.T. Fisk, Quantum noise—a limit in photodetection. Appl. Phys. B 49, 291 (1989)

    Article  ADS  Google Scholar 

  210. H.A. Bachor, A Guide to Experiments in Quantum Optics (Wiley/VCH, Weinheim, 1998)

    MATH  Google Scholar 

  211. R.J. Glauber, Optical coherence and photon statistics, in Quantum Optics and Electronics, ed. by C. DeWitt, A. Blandia, C. Cohen-Tannoudji (Gordon & Breach, New York, 1965), p. 65; J.D. Cresser, Theory of the spectrum of the quantized light field. Phys. Rep. 94, 48 (1983); H. Paul, Squeezed states—nichtklassische Zustände des Strahlungsfeldes. Laser Optoelektron. 19, 45 (1987)

    Google Scholar 

  212. R.E. Slusher, L.W. Holberg, B. Yorke, J.C. Mertz, J.F. Valley, Observation of squeezed states generated by four wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409 (1985)

    Article  ADS  Google Scholar 

  213. M. Xiao, L.A. Wi, H.J. Kimble, Precision measurements beyond the shot noise limit. Phys. Rev. Lett. 59, 278 (1987)

    Article  ADS  Google Scholar 

  214. H.J. Kimble, D.F. Walls (guest eds.), Feature issue on squeezed states of the electromagnetic field. J. Opt. Soc. Am. B 4, 1449 (1987); P. Kurz, R. Paschotta, K. Fiedler, J. Mlynek, Bright squeezed light by second harmonic generation and monolytic resonator. Europhys. Lett. 24, 449 (1993)

    Google Scholar 

  215. T. Steinmetz et al., Laser frequency combs for astronomical observations. Science 321, 1335 (2008)

    Article  ADS  Google Scholar 

  216. T.M. Niebaum, A. Rüdiger, R. Schilling, L. Schnupp, W. Winkler, K. Danzmann, Pulsar search using data compression with the Garching gravitational wave detector. Phys. Rev. D 47, 3106 (1993)

    Article  ADS  Google Scholar 

  217. B. Bernhardt et al., Cavity-enhanced dual comb spectroscopy. Nat. Photonics 4, 55 (2010); and Appl. Phys. B 100, 3 (2010); B. Bernhardt, PhD thesis, LMU, München, 2007; C.H. Gohle et al., Frequency comb vernier spectroscopy for broadband high resolution high sensitivity absorption and dispersion spectra. Phys. Rev Lett. 99, 263902 (2007)

    Article  ADS  Google Scholar 

  218. T.W. Hänsch, N. Picqué, Laser Spectroscopy and Frequency Combs ICOLS 2013. J. Physics: Conference Series, vol. 467 (2013)

    Google Scholar 

  219. P.G. Blair (ed.), The Detection of Gravitational Waves (Cambridge Univ. Press, Cambridge, 1991)

    Google Scholar 

  220. P.S. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific, Singapore, 1994)

    Book  Google Scholar 

  221. K. Zaheen, M.S. Zubairy, Squeezed states of the radiation field. Adv. At. Mol. Phys. 28, 143 (1991)

    ADS  Google Scholar 

  222. H.J. Kimble, Squeezed states of light. Adv. Chem. Phys. 38, 859 (1989)

    Google Scholar 

  223. P. Tombesi, E.R. Pikes (eds.), Squeezed and Nonclassical Light (Plenum, New York, 1989)

    Google Scholar 

  224. E. Giacobino, C. Fabry (guest eds.), Quantum noise reduction in optical systems. Appl. Phys. B 55, 187–297 (1992)

    Google Scholar 

  225. D.F. Walls, G.J. Milburn, Quantum Optics, study edn. (Springer, Berlin, 1995)

    MATH  Google Scholar 

  226. H.A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer, Berlin, 2000)

    Book  MATH  Google Scholar 

  227. H.J. Carmichael, R.J. Glauber, M.O. Scully (eds.), Directions in Quantum Optics (Springer, Berlin, 2001)

    Google Scholar 

  228. K. Qu, G.S. Agaral, Ramsey spectroscopy using squeezed light. Opt. Lett. 38, 2563 (2013)

    Article  ADS  Google Scholar 

  229. H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, R. Schnabel, The GEO600 squeezed light source. Class. Quantum Gravity 27, 084027 (2010)

    Article  ADS  Google Scholar 

  230. http://www.geo600.org/1265074/Advanced_LIGO

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demtröder, W. (2015). New Developments in Laser Spectroscopy. In: Laser Spectroscopy 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44641-6_9

Download citation

Publish with us

Policies and ethics