Skip to main content

Optical Pumping and Double-Resonance Techniques

  • Chapter
  • 5026 Accesses

Abstract

Optical pumping means selective population or depletion of atomic or molecular levels by absorption of radiation, resulting in a population change ΔN in these levels, which causes a noticeable deviation from the thermal equilibrium population. With intense atomic resonance lines emitted from hollow-cathode lamps or from microwave discharge lamps, optical pumping had successfully been used for a long time in atomic spectroscopy, even before the invention of the laser (Bernheim in Optical pumping, an introduction, Benjamin, New York, 1965; Budick in Adv. at. mol. phys., vol. 3, Academic Press, New York, 1967). However, the introduction of lasers as very powerful pumping sources with narrow linewidths has substantially increased the application range of optical pumping. In particular, lasers have facilitated the transfer of this well-developed technique to molecular spectroscopy. While early experiments on optical pumping of molecules (Zare in Int’l colloquium on Doppler-Free spectroscopic methods for simple molecular systems, CNRS, Paris, 1974; Broyer et al. in Adv. at. mol. phys., vol. 12, Academic Press, New York, 1976) were restricted to accidental coincidences between molecular absorption lines and atomic resonance lines from incoherent sources, the possibility of tuning a laser to the desired molecular transition provides a much more selective and effective pumping process. It allows, because of the larger intensity, a much larger change ΔN i =N i0N i of the population density in the selected level |i〉 from its unsaturated value N i0 at thermal equilibrium to a nonequilibrium value N i .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

Chapter 5

  1. R.A. Bernheim, Optical Pumping, an Introduction (Benjamin, New York, 1965)

    Google Scholar 

  2. B. Budick, Optical pumping methods in atomic spectroscopy, in Adv. At. Mol. Phys., vol. 3 (Academic Press, New York, 1967), p. 73

    Google Scholar 

  3. R.N. Zare, Optical pumping of molecules, in Int’l Colloquium on Doppler-Free Spectroscopic Methods for Simple Molecular Systems (CNRS, Paris, 1974), p. 29

    Google Scholar 

  4. M. Broyer, G. Gouedard, J.C. Lehmann, J. Vigue, Optical pumping of molecules, in Adv. At. Mol. Phys., vol. 12 (Academic Press, New York, 1976), p. 164

    Google Scholar 

  5. G. zu Putlitz, Determination of nuclear moments with optical double resonance, in Springer Tracts Mod. Phys., vol. 37 (Springer, Berlin, 1965), p. 105

    Google Scholar 

  6. C. Cohen-Tannoudji, Optical pumping with lasers, in Atomic Physics IV, ed. by G. zu Putlitz, E.W. Weber, A. Winnacker (Plenum, New York, 1975), p. 589

    Chapter  Google Scholar 

  7. R.N. Zare, Angular Momentum (Wiley, New York, 1988)

    Google Scholar 

  8. R.E. Drullinger, R.N. Zare, Optical pumping of molecules. J. Chem. Phys. 51, 5532 (1969)

    Article  ADS  Google Scholar 

  9. K. Bergmann, State selection via optical methods, in Atomic and Molecular Beam Methods, ed. by G. Scoles (Oxford Univ. Press, Oxford, 1988), p. 293

    Google Scholar 

  10. H.G. Weber, P. Brucat, W. Demtröder, R.N. Zare, Measurement of \(\mathrm{NO_{2} {}^{2}B_{2}}\) state g-values by optical radio frequency double-resonance. J. Mol. Spectrosc. 75, 58 (1979)

    Article  ADS  Google Scholar 

  11. W. Happer, Optical pumping. Rev. Mod. Phys. 44, 168 (1972); R.J. Knize, Z. Wu, W. Happer, Optical pumping and spin exchange in gas cells. Adv. At. Mol. Phys. 24, 223 (1987)

    Article  ADS  Google Scholar 

  12. B. Budick, Optical pumping methods in atomic spectroscopy. Adv. At. Mol. Phys. 3, 73 (1967); M. Broyer et al., Optical pumping of molecules. Adv. At. Mol. Phys. 12, 165 (1976)

    Article  ADS  Google Scholar 

  13. B. Decomps, M. Dumont, M. Ducloy, Linear and nonlinear phenomena in laser optical pumping, in Laser Spectroscopy of Atoms and Molecules, ed. by H. Walther. Topics Appl. Phys., vol. 2 (Springer, Berlin, 1976), p. 284

    Chapter  Google Scholar 

  14. G.W. Series, Thirty years of optical pumping. Contemp. Phys. 22, 487 (1981)

    Article  ADS  Google Scholar 

  15. P.R. Hemmer, M.K. Kim, M.S. Shahriar, Observation of sub-kilohertz resonances in RF-optical double resonance experiment in rare earth ions in solids. J. Mod. Opt. 47, 1713 (2000)

    Article  ADS  Google Scholar 

  16. I.I. Rabi, Zur Methode der Ablenkung von Molekularstrahlen. Z. Phys. 54, 190 (1929)

    Article  ADS  Google Scholar 

  17. H. Kopfermann, Kernmomente (Akad. Verlagsanstalt, Frankfurt, 1956)

    MATH  Google Scholar 

  18. N.F. Ramsay, in Molecular Beams, 2nd edn. (Clarendon, Oxford, 1989)

    Google Scholar 

  19. J.C. Zorn, T.C. English, Molecular beam electric resonance spectroscopy, in Adv. At. Mol. Phys., vol. 9 (Academic, New York, 1973), p. 243

    Google Scholar 

  20. D.D. Nelson, G.T. Fraser, K.I. Peterson, K. Zhao, W. Klemperer, The microwave spectrum of \(\mathrm{K=O}\) states of \(\mathrm{Ar\mbox{--}NH_{3}}\). J. Chem. Phys. 85, 5512 (1986)

    Article  ADS  Google Scholar 

  21. A.E. DeMarchi (ed.), Frequency Standards and Metrology (Springer, Berlin, 1989), pp. 46 ff.

    Google Scholar 

  22. W.J. Childs, Use of atomic beam laser RF double resonance for interpretation of complex spectra. J. Opt. Soc. Am. B 9, 191 (1992)

    Article  ADS  Google Scholar 

  23. S.D. Rosner, R.A. Holt, T.D. Gaily, Measurement of the zero-field hyperfine structure of a single vibration-rotation level of \(\mathrm{Na_{2}}\) by a laser-fluorescence molecular-beam resonance. Phys. Rev. Lett. 35, 785 (1975)

    Article  ADS  Google Scholar 

  24. A.G. Adam, Laser-fluorescence molecular-beam-resonance studies of \(\mathrm{Na_{2}}\) lineshape due to HFS. PhD thesis, Univ. of Western Ontario, London, Ontario, 1981; A.G. Adam, S.D. Rosner, T.D. Gaily, R.A. Holt, Coherence effects in laser-fluorescence molecular beam magnetic resonance. Phys. Rev. A 26, 315 (1982)

    Google Scholar 

  25. W. Ertmer, B. Hofer, Zerofield hyperfine structure measurements of the metastable states 3d 24s 4 F 3/29/2 of \({}_{}^{\ast}\mathrm{SC}\) using laser-fluorescence-atomic beam magnetic resonance technique. Z. Phys. A 276, 9 (1976)

    Article  ADS  Google Scholar 

  26. G.D. Domenico et al., Sensitivity of double resonance alignment magnetometers. arXiv:0706.0104v1 [physics.atom-phy], 1 Juni 2007

  27. J. Pembczynski, W. Ertmer, V. Johann, S. Penselin, P. Stinner, Measurement of the hyperfine structure of metastable atomic states of \({}_{}^{55}\mathrm{Mm}\), using the ABMR-LIRF-method. Z. Phys. A 291, 207 (1979); and 294, 313 (1980)

    Article  ADS  Google Scholar 

  28. N. Dimarca, V. Giordano, G. Theobald, P. Cérez, Comparison of pumping a cesium beam tube with \(\mathrm{D_{1}}\) and \(\mathrm{D_{2}}\) lines. J. Appl. Phys. 69, 1159 (1991)

    ADS  Google Scholar 

  29. G.W. Chantry (ed.), Modern Aspects of Microwave Spectroscopy (Academic Press, London, 1979)

    Google Scholar 

  30. K. Shimoda, Double resonance spectroscopy by means of a laser, in Laser Spectroscopy of Atoms and Molecules, ed. by H. Walther. Topics Appl. Phys., vol. 2 (Springer, Berlin, 1976), p. 197

    Chapter  Google Scholar 

  31. K. Shimoda, Infrared-microwave double resonance, in Laser Spectroscopy III, ed. by J.L. Hall, H.L. Carlsten. Springer Ser. Opt. Sci., vol. 7 (Springer, Berlin, 1975), p. 279

    Chapter  Google Scholar 

  32. H. Jones, Laser microwave-double-resonance and two-photon spectroscopy. Comments At. Mol. Phys. 8, 51 (1978)

    Google Scholar 

  33. F. Tang, A. Olafson, J.O. Henningsen, A study of the methanol laser with a 500 MHz tunable \(\mathrm{CO_{2}}\) laser. Appl. Phys. B 47, 47 (1988)

    Article  ADS  Google Scholar 

  34. R. Neumann, F. Träger, G. zu Putlitz, Laser microwave spectroscopy, in Progress in Atomic Spectroscopy, ed. by H.J. Byer, H. Kleinpoppen (Plenum, New York, 1987)

    Google Scholar 

  35. J.C. Petersen, T. Amano, D.A. Ramsay, Microwave-optical double resonance of DND in the \(A \, {}^{1}_{}\mathrm{A}_{} ^{\prime\prime}(000)\) state. J. Chem. Phys. 81, 5449 (1984)

    Article  ADS  Google Scholar 

  36. R.W. Field, A.D. English, T. Tanaka, D.O. Harris, P.A. Jennings, Microwave-optical double resonance with a CW dye laser, BaO \(X \, {}^{1}_{}\mathrm{\varSigma}_{} \) and \(A \, {}^{1}_{}\mathrm{\varSigma}_{} \). J. Chem. Phys. 59, 2191 (1973)

    Article  ADS  Google Scholar 

  37. R.A. Gottscho, J. Brooke-Koffend, R.W. Field, J.R. Lombardi, OODR spectroscopy of BaO. J. Chem. Phys. 68, 4110 (1978); and J. Mol. Spectrosc. 82, 283 (1980)

    Article  ADS  Google Scholar 

  38. J.M. Cook, G.W. Hills, R.F. Curl, Microwave-optical double resonance spectrum of \(\mathrm{NH_{2}}\). J. Chem. Phys. 67, 1450 (1977)

    Article  ADS  Google Scholar 

  39. W.E. Ernst, S. Kindt, A molecular beam laser-microwave double resonance spectrometer for precise measurements of high temperature molecules. Appl. Phys. B 31, 79 (1983)

    Article  ADS  Google Scholar 

  40. W.J. Childs, The hyperfine structure of alkaline-earth monohalide radicals: new methods and new results 1980–1982. Comments At. Mol. Phys. 13, 37 (1983)

    Google Scholar 

  41. W.E. Ernst, S. Kindt, T. Törring, Precise Stark-effect measurements in the \({}^{2}_{}\mathrm{\sigma}_{}\)-ground state of CaCl. Phys. Rev. Phys. Lett. 51, 979 (1983); and Phys. Rev. A 29, 1158 (1984)

    Article  ADS  Google Scholar 

  42. M. Schäfer, M. Andrist, H. Schmutz, F. Lewen, G. Winnewisser, F. Merkt, A 240–380 GHz millimeter wave source for very high resolution spectroscopy of high Rydberg states. J. Phys. B, At. Mol. Opt. Phys. 39, 831 (2006); A. Osterwalder, A. Wuest, F. Merkt, C. Jungen, High resolution millimeter wave spectroscopy and MQDT of the hyperfine structure in high Rydberg states of molecular hydrogen \(\mathrm{H_{2}}\). J. Chem. Phys. 121, 11810 (2004)

    Article  ADS  Google Scholar 

  43. W. Demtröder, D. Eisel, H.J. Foth, G. Höning, M. Raab, H.J. Vedder, D. Zevgolis, Sub-Doppler laser spectroscopy of small molecules. J. Mol. Struct. 59, 291 (1980)

    Article  ADS  Google Scholar 

  44. F. Bylicki, G. Persch, E. Mehdizadeh, W. Demtröder, Saturation spectroscopy and OODR of \(\mathrm {NO_{2}}\) in a collimated molecular beam. Chem. Phys. 135, 255 (1989)

    Article  ADS  Google Scholar 

  45. M.A. Johnson, C.R. Webster, R.N. Zare, Rotational analysis of congested spectra: application of population labelling to the BaI C–X system. J. Chem. Phys. 75, 5575 (1981)

    Article  ADS  Google Scholar 

  46. M.A. Kaminsky, R.T. Hawkins, F.V. Kowalski, A.L. Schawlow, Identification of absorption lines by modulated lower-level population: spectrum of \(\mathrm{Na_{2}}\). Phys. Rev. Lett. 36, 671 (1976)

    Article  ADS  Google Scholar 

  47. A.L. Schawlow, Simplifying spectra by laser labelling. Phys. Scr. 25, 333 (1982)

    Article  ADS  Google Scholar 

  48. D.P. O’Brien, S. Swain, Theory of bandwidth induced asymmetry in optical double resonances. J. Phys. B 16, 2499 (1983)

    Article  ADS  Google Scholar 

  49. S.A. Edelstein, T.F. Gallagher, Rydberg atoms, in Adv. At. Mol. Phys., vol. 14 (Academic Press, New York, 1978), p. 365

    Google Scholar 

  50. I.I. Sobelman, Atomic Spectra and Radiative Transitions, 2nd edn. Springer Ser. Atoms and Plasmas, vol. 12 (Springer, Berlin, 1992)

    Book  Google Scholar 

  51. R.F. Stebbings, F.B. Dunnings (eds.), Rydberg States of Atoms and Molecules (Cambridge Univ. Press, Cambridge, 1983)

    Google Scholar 

  52. T. Gallagher, Rydberg Atoms (Cambridge Univ. Press, Cambridge, 1994)

    Book  Google Scholar 

  53. H. Figger, Experimente an Rydberg-Atomen und Molekülen. Phys. Unserer Zeit 15, 2 (1984)

    Article  ADS  Google Scholar 

  54. J.A.C. Gallas, H. Walther, E. Werner, Simple formula for the ionization rate of Rydberg states in static electric fields. Phys. Rev. Lett. 49, 867 (1982)

    Article  ADS  Google Scholar 

  55. C.E. Theodosiou, Lifetimes of alkali-metal-atom Rydberg states. Phys. Rev. A 30, 2881 (1984)

    Article  ADS  Google Scholar 

  56. J. Neukammer, H. Rinneberg, K. Vietzke, A. König, H. Hyronymus, M. Kohl, H.J. Grabka, Spectroscopy of Rydberg atoms at n=500. Phys. Rev. Lett. 59, 2847 (1987)

    Article  ADS  Google Scholar 

  57. K.H. Weber, K. Niemax, Impact broadening of very high Rb Rydberg levels by Xe. Z. Phys. A 312, 339 (1983)

    Article  ADS  Google Scholar 

  58. K. Heber, P.J. West, E. Matthias, Pressure shift and broadening of SnI Rydberg states in noble gases. Phys. Rev. A 37, 1438 (1988)

    Article  ADS  Google Scholar 

  59. R. Beigang, W. Makat, A. Timmermann, P.J. West, Hyperfine-induced n-mixing in high Rydberg states of \({}_{}^{87}\mathrm{Sr}\). Phys. Rev. Lett. 51, 771 (1983)

    Article  ADS  Google Scholar 

  60. T.F. Gallagher, W.E. Cooke, Interaction of blackbody radiation with atoms. Phys. Rev. Lett. 42, 835 (1979)

    Article  ADS  Google Scholar 

  61. L. Holberg, J.L. Hall, Measurements of the shift of Rydberg energy levels induced by blackbody radiation. Phys. Rev. Lett. 53, 230 (1984)

    Article  ADS  Google Scholar 

  62. H. Figger, G. Leuchs, R. Strauchinger, H. Walther, A photon detector for submillimeter wavelengths using Rydberg atoms. Opt. Commun. 33, 37 (1980)

    Article  ADS  Google Scholar 

  63. D. Wintgen, H. Friedrich, Classical and quantum mechanical transition between regularity and irregularity. Phys. Rev. A 35, 1464 (1987)

    Article  ADS  Google Scholar 

  64. G. Raithel, M. Fauth, H. Walther, Quasi-Landau resonances in the spectra of rubidium Rydberg atoms in crossed electric and magnetic fields. Phys. Rev. A 44, 1898 (1991)

    Article  ADS  Google Scholar 

  65. G. Wunner, Gibt es Chaos in der Quantenmechanik? Phys. Bl. 45, 139 (1989); M. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, Berlin, 1990)

    Article  Google Scholar 

  66. A. Holle, J. Main, G. Wiebusch, H. Rottke, K.H. Welge, Laser spectroscopy of the diamagnetic hydrogen atom in the chaotic region, in Atomic Spectra and Collisions in External Fields, ed. by K.T. Taylor, M.H. Nayfeh, C.W. Clark (Plenum, New York, 1988)

    Google Scholar 

  67. P. Meystre, M. Sargent III, Elements of Quantum Optics, 2nd edn. (Springer, Berlin, 1991)

    Book  MATH  Google Scholar 

  68. H. Held, J. Schlichter, H. Walther, Quantum chaos in Rydberg atoms. Lect. Notes Phys. 503, 1 (1998)

    Article  ADS  Google Scholar 

  69. A. Holle, G. Wiebusch, J. Main, K.H. Welge, G. Zeller, G. Wunner, T. Ertl, H. Ruder, Hydrogenic Rydberg atoms in strong magnetic fields. Z. Phys. D 5, 271 (1987)

    Article  ADS  Google Scholar 

  70. H. Rottke, K.H. Welge, Photoionization of the hydrogen atom near the ionization limit in strong electric field. Phys. Rev. A 33, 301 (1986)

    Article  ADS  Google Scholar 

  71. R. Seiler, T. Paul, M. Andrist, F. Merkt, Generation of programmable near Fourier-limited pulses of narrow band laser radiation from the near infrared to the vacuum ultraviolet. Rev. Sci. Instrum. 76, 103103 (2005)

    Article  ADS  Google Scholar 

  72. C. Fahre, S. Haroche, Spectroscopy of one- and two-electron Rydberg atoms, in Rydberg States of Atoms and Molecules, ed. by R.F. Stebbings, F.B. Dunnings (Cambridge Univ. Press, Cambridge, 1983)

    Google Scholar 

  73. J. Boulmer, P. Camus, P. Pillet, Autoionizing double Rydberg states in barium, in Electronic and Atomic Collisions, ed. by H.B. Gilbody, W.R. Newell, F.H. Read A.C. Smith (Elsevier, Amsterdam, 1988)

    Google Scholar 

  74. J. Boulmer, P. Camus, P. Pillet, Double Rydberg spectroscopy of the barium atom. J. Opt. Soc. Am. B 4, 805 (1987)

    Article  ADS  Google Scholar 

  75. I.C. Percival, Planetary atoms. Proc. R. Soc. Lond. A 353, 289 (1977)

    Article  ADS  Google Scholar 

  76. R.S. Freund, High Rydberg molecules, in Rydberg States of Atoms and Molecules, ed. by R.F. Stebbing, F.B. Dunning (Cambridge Univ. Press, Cambridge, 1983); G. Herzberg, Rydberg molecules. Annu. Rev. Phys. Chem. 38, 27 (1987)

    Google Scholar 

  77. R.A. Bernheim, L.P. Gold, T. Tipton, Rydberg states of \({}_{}^{7}\mathrm{Li_{2}}\) by pulsed optical–optical double resonance spectroscopy. J. Chem. Phys. 78, 3635 (1983); D. Eisel, W. Demtröder, W. Müller, P. Botschwina, Autoionization spectra of \(\mathrm{Li_{2}}\) and the \(X \, {}^{2}_{}\mathrm {\varSigma}_{g} ^{+}\) ground state of \(\mathrm{Li_{2}^{+}}\). Chem. Phys. 80, 329 (1983)

    Article  ADS  Google Scholar 

  78. M. Schwarz, R. Duchowicz, W. Demtröder, C. Jungen, Autoionizing Rydberg states of \(\mathrm {Li_{2}}\): analysis of electronic-rotational interactions. J. Chem. Phys. 89, 5460 (1988)

    Article  ADS  Google Scholar 

  79. C.H. Greene, C. Jungen, Molecular applications of quantum defect theory, in Adv. At. Mol. Phys, vol. 21 (Academic Press, New York, 1985), p. 51

    Google Scholar 

  80. F. Merkt, Molecules in high Rydberg states. Annu. Rev. Phys. Chem. 48, 675 (1997)

    Article  ADS  Google Scholar 

  81. A. Osterwalder, F. Merkt, High resolution spectroscopy of high Rydberg states. Chimica 54, 89 (2000)

    Google Scholar 

  82. S. Fredin, D. Gauyacq, M. Horani, C. Jungen, G. Lefevre, F. Masnou-Seeuws, S and d Rydberg series of NO probed by double resonance multiphoton ionization. Mol. Phys. 60, 825 (1987); R. Zhao, I.M. Konen, R.N. Zare, Optical–optical double resonance photoionization spectroscopy of nf Rydberg states of nitric oxide. J. Chem. Phys. 121, 9938 (2004)

    Article  ADS  Google Scholar 

  83. U. Aigner, L.Y. Baranov, H.L. Selzle, E.W. Schlag, Lifetime enhancement of ZEKE-states in molecular clusters and cluster fragmentation. J. Electron Spectrosc. Relat. Phenom. 112, 175 (2000)

    Article  Google Scholar 

  84. M. Sander, L.A. Chewter, K. Müller-Dethlefs, E.W. Schlag, High-resolution zero-kinetic-energy photoelectron spectroscopy of NO. Phys. Rev. A 36, 4543 (1987)

    Article  ADS  Google Scholar 

  85. K. Müller-Dethlefs, E.W. Schlag, High-resolution ZEKE photoelectron spectroscopy of molecular systems. Annu. Rev. Phys. Chem. 42, 109 (1991); E.R. Grant, M.G. White, ZEKE threshold photoelectron spectroscopy. Nature 354, 249 (1991); M.S. Ford, R. Lindner, K. Müller-Dethlefs, Fully rotationally resolved ZEKE photoelectron spectroscopy of \(\mathrm{C_{6}H_{6}}\) and \(\mathrm{C_{6}D_{6}}\). Mol. Phys. 101, 705 (2003)

    Article  ADS  Google Scholar 

  86. C.E.H. Descent, K. Müller-Dethlefs, Hydrogen-bonding and van der Waals Complexes Studies by ZEKE and REMP Spectroscopy. Chem. Rev. 100, 3999 (2000)

    Article  Google Scholar 

  87. R. Signorelli, U. Hollenstein, F. Merkt, PFI–ZEKE photo electron spectroscopy study of the first electronic states of \(\mathrm{Kr_{2}^{+}}\). J. Chem. Phys. 114, 9840 (2001); S. Willitsch, F. Innocenti, J.M. Dyke, F. Merkt, High resolution pulse-field-ionization ZEKE photoelectron spectroscopic study of the two lowest electronic states of the ozone cation \(\mathrm{O_{3}^{+}}\). J. Chem. Phys. 122, 024311 (2005)

    Article  ADS  Google Scholar 

  88. P. Goy, M. Bordas, M. Broyer, P. Labastie, B. Tribellet, Microwave transitions between molecular Rydberg states. Chem. Phys. Lett. 120, 1 (1985)

    Article  ADS  Google Scholar 

  89. P. Filipovicz, P. Meystere, G. Rempe, H. Walther, Rydberg atoms, a testing ground for quantum electrodynamics. Opt. Acta 32, 1105 (1985)

    ADS  Google Scholar 

  90. C.J. Latimer, Recent experiments involving highly excited atoms. Contemp. Phys. 20, 631 (1979)

    Article  ADS  Google Scholar 

  91. J.C. Gallas, G. Leuchs, H. Walther, H. Figger, Rydberg atoms: high resolution spectroscopy, in Adv. At. Mol. Phys., vol. 20 (Academic Press, New York, 1985), p. 414

    Google Scholar 

  92. G. Alber, P. Zoller, Laser-induced excitation of electronic Rydberg wave packets. Contemp. Phys. 32, 185 (1991)

    Article  ADS  Google Scholar 

  93. K. Harth, M. Raab, H. Hotop, Odd Rydberg spectrum of \({}_{}^{20}\mathrm{Ne}\): high resolution laser spectroscopy and MQDT analysis. Z. Phys. D 7, 219 (1987)

    Article  ADS  Google Scholar 

  94. V.S. Letokhov, V.P. Chebotayev, Nonlinear Laser Spectroscopy. Springer Ser. Opt. Sci., vol. 4 (Springer, Berlin, 1977), Chap. 5

    Google Scholar 

  95. T. Hänsch, P. Toschek, Theory of a three-level gas laser amplifier. Z. Phys. 236, 213 (1970)

    Article  ADS  Google Scholar 

  96. C. Kitrell, E. Abramson, J.L. Kimsey, S.A. McDonald, D.E. Reisner, R.W. Field, D.H. Katayama, Selective vibrational excitation by stimulated emission pumping. J. Chem. Phys. 75, 2056 (1981)

    Article  ADS  Google Scholar 

  97. H.-L. Da (guest ed.), Molecular spectroscopy and dynamics by stimulated-emission pumpings. J. Opt. Soc. Am. B 7, 1802 (1990)

    Google Scholar 

  98. G. Zhong He, A. Kuhn, S. Schiemann, K. Bergmann, Population transfer by stimulated Raman scattering with delayed pulses and by the stimulated-emission pumping method: a comparative study. J. Opt. Soc. Am. B 7, 1960 (1990)

    Article  ADS  Google Scholar 

  99. K. Yamanouchi, H. Yamada, S. Tsuciya, Vibrational levels structure of highly excited \(\mathrm{SO_{2}}\) in the electronic ground state as studied by stimulated emission pumping spectroscopy. J. Chem. Phys. 88, 4664 (1988)

    Article  ADS  Google Scholar 

  100. U. Brinkmann, Higher sensitivity and extended frequency range via stimulated emission pumping SEP. Lambda Phys. Highlights, 1 (1990)

    Google Scholar 

  101. H. Weickenmeier, U. Diemer, M. Wahl, M. Raab, W. Demtröder, W. Müller, Accurate ground state potential of \(\mathrm {Cs_{2}}\) up to the dissociation limit. J. Chem. Phys. 82, 5354 (1985)

    Article  ADS  Google Scholar 

  102. H. Weickemeier, U. Diemer, W. Demtröder, M. Broyer, Hyperfine interaction between the singlet and triplet ground states of \(\mathrm{Cs_{2}}\). Chem. Phys. Lett. 124, 470 (1986)

    Article  ADS  Google Scholar 

  103. M. Kabir, S. Kasabara, W. Demtröder, A. Doi, H. Kato, Doppler-free laser polarization spectroscopy and optical–optical double resonance polarization spectroscopy of a large molecule: naphthalene. J. Chem. Phys. 119, 3691 (2003)

    Article  ADS  Google Scholar 

  104. R. Teets, R. Feinberg, T.W. Hänsch, A.L. Schawlow, Simplification of spectra by polarization labelling. Phys. Rev. Lett. 37, 683 (1976)

    Article  ADS  Google Scholar 

  105. N.W. Carlson, A.J. Taylor, K.M. Jones, A.L. Schawlow, Two step polarization-labelling spectroscopy of excited states of \(\mathrm{Na_{2}}\). Phys. Rev. A 24, 822 (1981)

    Article  ADS  Google Scholar 

  106. B. Hemmerling, R. Bombach, W. Demtröder, N. Spies, Polarization labelling spectroscopy of molecular \(\mathrm{Li_{2}}\) Rydberg states. Z. Phys. D 5, 165 (1987)

    Article  ADS  Google Scholar 

  107. W.E. Ernst, Microwave optical polarization spectroscopy of the \(X \, {}^{2}_{}S_{} \) state of SrF. Appl. Phys. B 30, 2378 (1983)

    Article  Google Scholar 

  108. W.E. Ernst, T. Törring, Hyperfine Structure in the \(X \, {}^{2}_{}S_{} \) state of CaCl, measured with microwave optical polarization spectroscopy. Phys. Rev. A 27, 875 (1983)

    Article  ADS  Google Scholar 

  109. W.E. Ernst, O. Golonska, Microwave transitions in the \(\mathrm{Na_{3}}\) cluster. Phys. Rev. Lett. (2002, submitted)

    Google Scholar 

  110. Th. Weber, E. Riedle, H.J. Neusser, Rotationally resolved fluorescence dip and ion-dip spectra of single rovibronic states of benzene. J. Opt. Soc. Am. B 7, 1875 (1990)

    Article  ADS  Google Scholar 

  111. M. Takayanagi, I. Hanazaki, Fluorescence dip and stimulated emission-pumping laser-induced-fluorescence spectra of van der Waals molecules. J. Opt. Soc. Am. B 7, 1878 (1990)

    Article  ADS  Google Scholar 

  112. H.S. Schweda, G.K. Chawla, R.W. Field, Highly excited, normally inaccessible vibrational levels by sub-Doppler modulated gain spectroscopy. Opt. Commun. 42, 165 (1982)

    Article  ADS  Google Scholar 

  113. M. Elbs, H. Knöckel, T. Laue, C. Samuelis, E. Tiemann, Observation of the last bound levels near the \(\mathrm{Na_{2}}\) ground state asymptote. Phys. Rev. A 59, 3665 (1999)

    Article  ADS  Google Scholar 

  114. A. Crubellier, O. Dulieu, F. Masnou-Seeuws, M. Elbs, H. Knöckel, E. Tiemann, Simple determination of \(\mathrm{Na_{2}}\) scattering lengths using observed bound levels of the ground state asymptote. Eur. Phys. J. D 6, 211 (1999)

    ADS  Google Scholar 

  115. J. Léonard et al., Giant helium dimers produced by photoassociation of ultracold metastable atoms. Phys. Rev. Lett. 91, 073203 (2003)

    Article  ADS  Google Scholar 

  116. M. Semczuk et al., High resolution photo-association spectroscopy of the 6Li23 Σ g state. Phys. Rev. A 87, 052505 (2013)

    Article  ADS  Google Scholar 

  117. E.C. Stanca-Kaposta, J.P. Simon, High-resolution infrared–ultraviolet (IR–UV) Double-resonance spectroscopy of biological molecules, in Handbook of High Resolution Spectroscopy, ed. by M. Quack, F. Merkt (Wiley, New York, 2011), p. 1911

    Google Scholar 

  118. W.C. Stwalley, H. Wang, Photoassociation of ultracold atoms: a new spectroscopic technique. J. Mol. Spectrosc. 194, 228 (1999)

    Google Scholar 

  119. K.M. Jones, E. Tiesinger, P.D. Lett, P.J. Julienne, Ultracold photoassociation spectroscopy: long range molecules and atomic scattering. Rev. Mod. Phys. 78, 1041 (2006)

    Article  ADS  Google Scholar 

  120. N. Vanhaecke et al., Photoassociation spectroscopy of ultracold long-range molecules. C. R. Phys. 5, 161 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demtröder, W. (2015). Optical Pumping and Double-Resonance Techniques. In: Laser Spectroscopy 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44641-6_5

Download citation

Publish with us

Policies and ethics