Skip to main content

Doppler-Limited Absorption and Fluorescence Spectroscopy with Lasers

  • Chapter
Laser Spectroscopy 2
  • 5068 Accesses

Abstract

In Vol. 1, Chap. 5 we presented the different realizations of tunable lasers; we now discuss their applications in absorption and fluorescence spectroscopy. First we discuss those methods where the spectral resolution is limited by the Doppler width of the molecular absorption lines. This limit can in fact be reached if the laser linewidth is small compared with the Doppler width. In several examples, such as optical pumping or laser-induced fluorescence spectroscopy, multimode lasers may be employed, although in most cases single-mode lasers are superior. In general, however, these lasers may not necessarily be frequency stabilized as long as the frequency jitter is small compared with the absorption linewidth. We compare several detection techniques of molecular absorption spectroscopy with regard to their sensitivity and their feasibility in the different spectral regions. Some examples illustrate the methods to give the reader a feeling of what has been achieved. After the discussion of Doppler-limited spectroscopy, Chaps. 25 give an extensive treatment of various techniques which allow sub-Doppler spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Chapter 1

  1. R.J. Bell, Introductory Fourier Transform Spectroscopy (Academic Press, New York, 1972); P. Griffiths, J.A. de Haset, Fourier Transform Infrared Spectroscopy (Wiley, New York, 1986); J. Kauppinen, J. Partanen, Fourier Transforms in Spectroscopy (Wiley, New York, 2001)

    Google Scholar 

  2. D.G. Cameron, D.J. Moffat, A generalized approach to derivative spectroscopy. Appl. Spectrosc. 41, 539 (1987); G. Talsky, Derivative Spectrophotometers (VCH, Weinheim, 1994)

    Article  ADS  Google Scholar 

  3. G.C. Bjorklund, Frequency-modulation spectroscopy: A new method for measuring weak absorptions and dispersions. Opt. Lett. 5, 15 (1980)

    Article  ADS  Google Scholar 

  4. M. Gehrtz, G.C. Bjorklund, E. Whittaker, Quantum-limited laser frequency-modulation spectroscopy. J. Opt. Soc. Am. B 2, 1510 (1985)

    Article  ADS  Google Scholar 

  5. G.R. Janik, C.B. Carlisle, T.F. Gallagher, Two-tone frequency-modulation spectroscopy. J. Opt. Soc. Am. B 3, 1070 (1986)

    Article  ADS  Google Scholar 

  6. F.S. Pavone, M. Inguscio, Frequency- and wavelength-modulation spectroscopy: Comparison of experimental methods, using an AlGaAs diode laser. Appl. Phys. B 56, 118 (1993)

    Article  ADS  Google Scholar 

  7. R. Grosskloss, P. Kersten, W. Demtröder, Sensitive amplitude and phase-modulated absorption spectroscopy with a continuously tunable diode laser. Appl. Phys. B 58, 137 (1994)

    Article  ADS  Google Scholar 

  8. P.C.D. Hobbs, Ultrasensitive laser measurements without tears. Appl. Opt. 36, 903 (1997)

    Article  ADS  Google Scholar 

  9. P. Wehrle, A review of recent advances in semiconductor laser gas monitors. Spectrochim. Acta, Part A 54, 197 (1998); M.W. Sigrist (ed.), Tunable diode laser spectroscopy. Appl. Phys. B (2008) (Special Issue)

    Article  ADS  Google Scholar 

  10. J.A. Silver, Frequency modulation spectroscopy for trace species detection. Appl. Opt. 31, 707 (1992)

    Article  ADS  Google Scholar 

  11. W. Brunner, H. Paul, On the theory of intracavity absorption. Opt. Commun. 12, 252 (1974)

    Article  ADS  Google Scholar 

  12. K. Tohama, A simple model for intracavity absorption. Opt. Commun. 15, 17 (1975)

    Article  ADS  Google Scholar 

  13. A. Campargue, F. Stoeckel, M. Chenevier, High sensitivity intracavity laser spectroscopy: applications to the study of overtone transitions in the visible range. Spectrochim. Acta Rev. 13, 69 (1990)

    Google Scholar 

  14. A.A. Kaschanov, A. Charvat, F. Stoeckel, Intracavity laser spectroscopy with vibronic solid state lasers. J. Opt. Soc. Am. B 11, 2412 (1994)

    Article  ADS  Google Scholar 

  15. V.M. Baev, T. Latz, P.E. Toschek, Laser intracavity absorption spectroscopy. Appl. Phys. B 69, 171 (1999); V.M. Baev, Intracavity spectroscopy with diode lasers. Appl. Phys. B 55, 463 (1992)

    Article  ADS  Google Scholar 

  16. V.R. Mironenko, V.I. Yudson, Quantum noise in intracavity laser spectroscopy. Opt. Commun. 34, 397 (1980); V.R. Mironenko, V.I. Yudson, Quantum statistics of multimode lasing and noise in intracavity laser spectroscopy. Sov. Phys. JETP 52, 594 (1980)

    Article  ADS  Google Scholar 

  17. P.E. Toschek, V.M. Baev, One is not enough: intracavity laser spectroscopy with a multimode laser, in Laser Spectroscopy and New Ideas, ed. by W.M. Yen, M.D. Levenson. Springer Ser. Opt. Sci., vol. 54 (Springer, Berlin, 1987)

    Google Scholar 

  18. E.M. Belenov, M.V. Danileiko, V.R. Kozuborskii, A.P. Nedavnii, M.T. Shpak, Ultrahigh resolution spectroscopy based on wave competition in a ring laser. Sov. Phys. JETP 44, 40 (1976)

    ADS  Google Scholar 

  19. E.A. Sviridenko, M.P. Frolov, Possible investigations of absorption line profiles by intracavity laser spectroscopy. Sov. J. Quantum Electron. 7, 576 (1977)

    Article  ADS  Google Scholar 

  20. T.W. Hänsch, A.L. Schawlow, P. Toschek, Ultrasensitive response of a CW dye laser to selective extinction. IEEE J. Quantum Electron. 8, 802 (1972)

    Article  ADS  Google Scholar 

  21. R.N. Zare, Laser separation of isotopes. Sci. Am. 236, 86 (1977)

    Article  Google Scholar 

  22. R.G. Bray, W. Henke, S.K. Liu, R.V. Reddy, M.J. Berry, Measurement of highly forbidden optical transitions by intracavity dye laser spectroscopy. Chem. Phys. Lett. 47, 213 (1977)

    Article  ADS  Google Scholar 

  23. H. Atmanspacher, B. Baldus, C.C. Harb, T.G. Spence, B. Wilke, J. Xie, J.S. Harris, R.N. Zare, Cavity-locked ring-down spectroscopy. J. Appl. Phys. 83, 3991 (1998)

    Article  ADS  Google Scholar 

  24. W. Schrepp, H. Figger, H. Walther, Intracavity spectroscopy with a color-center laser. Laser Appl 77 (1984)

    Google Scholar 

  25. N. Picqé, F. Gueye, G. Guelachvili, E. Sorokin, I.T. Sorokina, Time-resolved Fourier-Transform Intracavity spectroscopy with a \(\mathrm{Cr^{2+}}\):ZnSe-laser. Opt. Lett. 30, 24 (2005)

    Google Scholar 

  26. V.M. Baev, K.J. Boller, A. Weiler, P.E. Toschek, Detection of spectrally narrow light emission by laser intracavity spectroscopy. Opt. Commun. 62, 380 (1987); V.M. Baev, Intracavity spectroscopy with diode lasers. Appl. Phys. B 49, 315 (1989); 55, 463 (1992); and 69, 171 (1999)

    Article  ADS  Google Scholar 

  27. V.M. Baev, A. Weiler, P.E. Toschek, Ultrasensitive intracavity spectroscopy with multimode lasers. J. Phys. (Paris) 48(C7), 701 (1987)

    Google Scholar 

  28. T.D. Harris, Laser intracavity-enhanced spectroscopy, in Ultrasensitive Laser Spectroscopy, ed. by D.S. Kliger (Academic, New York, 1983)

    Google Scholar 

  29. E.H. Piepmeier (ed.), Analytical Applications of Lasers (Wiley, New York, 1986)

    Google Scholar 

  30. H. Atmanspacher, H. Scheingraber, C.R. Vidal, Dynamics of laser intracavity absorption. Phys. Rev. A 32, 254 (1985); H. Atmanspacher, H. Scheingraber, C.R. Vidal, Mode-correlation times and dynamical instabilities in a multimode CW dye laser. Phys. Rev. A 33, 1052 (1986)

    Article  ADS  Google Scholar 

  31. H. Atmanspacher, H. Scheingraber, V.M. Baev, Stimulated Brillouin scattering and dynamical instabilities in a multimode laser. Phys. Rev. A 35, 142 (1987)

    Article  ADS  Google Scholar 

  32. G. Stewart, K. Atherton, H. Yu, B. Culshaw, Cavity-Enhanced Spectroscopy in Fibre Cavities. Opt. Lett. 29, 442 (2004)

    Article  ADS  Google Scholar 

  33. A. Stark et al., Intercavity Absorption Spectroscopy with Thulium-doped Fibre Laser. Opt. Commun. 215, 113 (2003)

    Article  ADS  Google Scholar 

  34. K. Strong, T.J. Johnson, G.W. Harris, Visible intracavity laser spectroscopy with a step-scan Fourier-transform interferometer. Appl. Opt. 36, 8533 (1997)

    Article  ADS  Google Scholar 

  35. J. Cheng et al., Infrared intracavity laser absorption spectroscopy with a continuous-scan Fourier-transform interferometer. Appl. Opt. 39(13), 2221 (2000)

    Article  ADS  Google Scholar 

  36. B. Löhden, S. Kuznetsova, K. Sengstock, V.M. Baev, A. Goldman, S. Cheskis, B. Pálsdóttir, Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments. Appl. Phys. B, Lasers Opt. 102, 331–344 (2011)

    Article  ADS  Google Scholar 

  37. A. Goldman, I. Rahinov, S. Cheskis, B. Löhden, S. Wexler, K. Engstock, V.M. Baev, Fiber laser intracavity absorption spectroscopy of ammonia and hydrogen cyanide in low pressure hydrocarbon flames. Chem. Phys. Lett. 423, 147–151 (2006)

    Article  ADS  Google Scholar 

  38. P. Zalicki, R.N. Zare, Cavity ringdown spectroscopy for quantitative absorption measurements. J. Chem. Phys. 102, 2708 (1995)

    Article  ADS  Google Scholar 

  39. D. Romanini, K.K. Lehmann, Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven and eight stretching quanta. J. Chem. Phys. 99, 6287 (1993)

    Article  ADS  Google Scholar 

  40. M.D. Levenson, B.A. Paldus, T.G. Spence, C.C. Harb, J.S. Harris, R.N. Zare, Optical heterodyne detection in cavity ring-down spectroscopy. Chem. Phys. Lett. 290, 335 (1998); M.D. Levenson, B.A. Paldus, T.G. Spence, C.C. Harb, J.S. Harris, R.N. Zare, Frequency switched cavity ring down spectroscopy. Opt. Lett. 25, 920 (2000)

    Article  ADS  Google Scholar 

  41. B.A. Baldus, R.N. Zare et al., Cavity-locked ringdown spectroscopy. J. Appl. Phys. 83, 3991 (1998)

    Article  ADS  Google Scholar 

  42. J.J. Scherer, J.B. Paul, C.P. Collier, A. O’Keefe, R.J. Saykally, Cavity-ringdown laser absorption spectroscopy and time-of-flight mass spectroscopy of jet-cooled gold silicides. J. Chem. Phys. 103, 9187 (1995); A. O’Keefe, J.J. Scherer, J.B. Paul, R.J. Saykally, Cavity-ringdown laser spectroscopy: history, development, and applications, in 1997 ACS Symposium Series 720 on Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique, ed. by K. Busch, M. Busch (1999), pp. 71–92

    Article  ADS  Google Scholar 

  43. K.H. Becker, D. Haaks, T. Tartarczyk, Measurements of \(\mathrm{C_{2}}\)-radicals in flames with a tunable dye lasers. Z. Naturforsch. A 29, 829 (1974)

    ADS  Google Scholar 

  44. A. O’Keefe, Integrated cavity output analysis of ultraweak absorption. Chem. Phys. Lett. 293, 331 (1998)

    Article  ADS  Google Scholar 

  45. A. Popp et al., Ultrasensitive mid-infrared cavity leak-out spectroscopy using a cw optical parametric oscillator. Appl. Phys. B 75, 751 (2003)

    Article  ADS  Google Scholar 

  46. D. Halmer, G. von Basum, P. Hering, M. Mürtz, Mid-infrared cavity leak-out spectroscopy for ultrasensitive detection of carbonyl sulfide. Opt. Lett. 30, 2314 (2005)

    Article  ADS  Google Scholar 

  47. A. Deev, Cavity ringdown spectroscopy of atmospherically important radicals. PhD thesis, CALTEC, Pasadena, 2005

    Google Scholar 

  48. M. Mürtz, B. Frech, W. Urban, High-resolution cavity-leak-out absorption spectroscopy in the 10 μm region. Appl. Phys. B 68, 243 (1999)

    Article  ADS  Google Scholar 

  49. M. Muertz et al., Recent developments in cavity ring-down spectroscopy with tunable cw lasers in the mid-infrared. Environ. Sci. Pollut. Res. 4, 61–67 (2002). Special Issue

    Google Scholar 

  50. J.J. Scherer, J.B. Paul, C.P. Collier, A. O’Keefe, R.J. Saykally, Cavity ringdown laser absorption spectroscopy history, development and application to pulsed molecular beams. Chem. Rev. 97, 25 (1997)

    Article  Google Scholar 

  51. G. Berden, R. Peėters, G. Meijer, Cavity ringdown spectroscopy: experimental schemes and applications. Int. Rev. Phys. Chem. 19, 565 (2000)

    Article  Google Scholar 

  52. K.W. Busch, M.A. Busch, Cavity Ringdown Spectroscopy (Oxford Univ. Press, Oxford, 1999)

    Book  Google Scholar 

  53. E. Namers, D. Schramm, R. Engels, Fourier-transform phase shift cavity ringdown spectroscopy. Chem. Phys. Lett. 365, 237 (2002)

    Article  ADS  Google Scholar 

  54. G. Berden, G. Meijer, W. Ubachs, Spectroscopic Applications using ring-down cavities. Exp. Methods Phys. Sci. 40, 49 (2002)

    Google Scholar 

  55. R. Engeln, G. Meijer, A Fourier-transform phase-shift cavity ring down spectrometer. Rev. Sci. Instrum. 67, 2708 (1996)

    Article  ADS  Google Scholar 

  56. W.M. Fairbanks, T.W. Hänsch, A.L. Schawlow, Absolute measurement of very low sodium-vapor densities using laser resonance fluorescence. J. Opt. Soc. Am. 65, 199 (1975)

    Article  ADS  Google Scholar 

  57. H.G. Krämer, V. Beutel, K. Weyers, W. Demtröder, Sub-Doppler laser spectroscopy of silver dimers \(\mathrm{Ag_{2}}\) in a supersonic beam. Chem. Phys. Lett. 193, 331 (1992)

    Article  ADS  Google Scholar 

  58. P.J. Dagdigian, H.W. Cruse, R.N. Zare, Laser fluorescence study of AlO, formed in the reaction \({ \mathrm{Al} } + { \mathrm{O_{2}} }\): product state distribution, dissociation energy and radiative lifetime. J. Chem. Phys. 62, 1824 (1975)

    Article  ADS  Google Scholar 

  59. W.E. Moerner, L. Kador, Finding a single molecule in a haystack. Anal. Chem. 61, 1217A (1989); W.E. Moerner, Examining nanoenvironments in solids on the scale of a single, isolated impurity molecule. Science 265, 46 (1994)

    Google Scholar 

  60. K. Kneipp, S.R. Emory, S. Nie, Single-molecule Raman-spectroscopy: fact or fiction? Chimica 53, 35 (1999)

    Google Scholar 

  61. T. Plakbotnik, E.A. Donley, U.P. Wild, Single molecule spectroscopy. Annu. Rev. Phys. Chem. 48, 181 (1997)

    Article  ADS  Google Scholar 

  62. H.J. Bauer, Son et lumiere or the optoacoustic effect in multilevel systems. J. Chem. Phys. 57, 3130 (1972) (references to the historical development)

    Article  ADS  Google Scholar 

  63. Y.-H. Pao (ed.), Optoacoustic Spectroscopy and Detection (Academic Press, New York, 1977)

    Google Scholar 

  64. A. Rosencwaig, Photoacoustic Spectroscopy (Wiley, New York, 1980)

    Google Scholar 

  65. V.P. Zharov, V.S. Letokhov, Laser Optoacoustic Spectroscopy. Springer Ser. Opt. Sci., vol. 37 (Springer, Berlin, 1986)

    Google Scholar 

  66. M.W. Sigrist (ed.), Air Monitoring by Spectroscopic Techniques (Wiley, New York, 1994); J. Xiu, R. Stroud, Acousto-Optic Devices: Principles, Design and Applications (Wiley, New York, 1992)

    Google Scholar 

  67. P. Hess, J. Pelzl (eds.), Photoacoustic and Photothermal Phenomena. Springer Ser. Opt. Sci., vol. 58 (Springer, Berlin, 1988)

    Google Scholar 

  68. P. Hess (ed.), Photoacoustic, Photothermal and Photochemical Processes in Gases. Topics Curr. Phys, vol. 46 (Springer, Berlin, 1989)

    Google Scholar 

  69. J.C. Murphy, J.W. Maclachlan Spicer, L.C. Aamodt, B.S.H. Royce (eds.), Photoacoustic and Photothermal Phenomena II. Springer Ser. Opt. Sci., vol. 62 (Springer, Berlin, 1990)

    Google Scholar 

  70. L.B. Kreutzer, Laser optoacoustic spectroscopy: a new technique of gas analysis. Anal. Chem. 46, 239A (1974)

    Google Scholar 

  71. W. Schnell, G. Fischer, Spectraphone measurements of isotopes of water vapor and nitric oxide and of phosgene at selected wavelengths in the CO- and \(\mathrm{CO_{2}}\)-laser region. Opt. Lett. 2, 67 (1978)

    Article  ADS  Google Scholar 

  72. C. Hornberger, W. Demtröder, Photoacoustic overtone spectroscopy of acetylene in the visible and near infrared. Chem. Phys. Lett. 190, 171 (1994)

    Google Scholar 

  73. C.K.N. Patel, Use of vibrational energy transfer for excited-state opto-acoustic spectroscopy of molecules. Phys. Rev. Lett. 40, 535 (1978)

    Article  ADS  Google Scholar 

  74. G. Stella, J. Gelfand, W.H. Smith, Photoacoustic detection spectroscopy with dye laser excitation. The 6190 Å \(\mathrm{CH_{4}}\) and the 6450 \(\mathrm{NH_{3}}\)-bands. Chem. Phys. Lett. 39, 146 (1976)

    Article  ADS  Google Scholar 

  75. A.M. Angus, E.E. Marinero, M.J. Colles, Opto-acoustic spectroscopy with a visible CW dye laser. Opt. Commun. 14, 223 (1975)

    Article  ADS  Google Scholar 

  76. E.E. Marinero, M. Stuke, Quartz optoacoustic apparatus for highly corrosive gases. Rev. Sci. Instrum. 50, 31 (1979)

    Article  Google Scholar 

  77. A.C. Tam, Photoacoustic spectroscopy and other applications, in Ultrasensitive Laser Spectroscopy, ed. by D.S. Kliger (Academic Press, New York, 1983), pp. 1–108

    Chapter  Google Scholar 

  78. V.Z. Gusev, A.A. Karabutov, Laser Optoacoustics (Springer, Berlin, 1997)

    Google Scholar 

  79. A.C. Tam, C.K.N. Patel, High-resolution optoacoustic spectroscopy of rare-earth oxide powders. Appl. Phys. Lett. 35, 843 (1979)

    Article  ADS  Google Scholar 

  80. J.F. NcClelland et al., Photoacoustic spectroscopy, in Modern Techniques in Applied Molecular Spectroscopy, ed. by F.M. Mirabella (Wiley, New York, 1998)

    Google Scholar 

  81. K.H. Michaelian, Photo-acoustic Infrared Spectroscopy (Wiley Interscience, New York, 2003)

    Book  Google Scholar 

  82. T.E. Gough, G. Scoles, Optothermal infrared spectroscopy, in Laser Spectroscopy V, ed. by A.R.W. McKeller, T. Oka, B.P. Stoicheff. Springer Ser. Opt. Sci., vol. 30 (Springer, Berlin, 1981), p. 337; T.E. Gough, R.E. Miller, G. Scoles, Sub-Doppler resolution infrared molecular beam spectroscopy. Faraday Disc. 71, 6 (1981)

    Chapter  Google Scholar 

  83. M. Zen, Cryogenicbolometers, in Atomic and Molecular Beams Methods, vol. 1 (Oxford Univ. Press, London, 1988)

    Google Scholar 

  84. R.E. Miller, Infrared laser spectroscopy, in Atomic and Molecular Beam Methods, ed. by G. Scoles (Oxford Univ. Press, London, 1992), pp. 192 ff.; D. Bassi, Detection principles, in Atomic and Molecular Beam Methods, ed. by G. Scoles (Oxford Univ. Press, London, 1992), pp. 153 ff.

    Google Scholar 

  85. T.B. Platz, W. Demtröder, Sub-Doppler optothermal overtone spectroscopy of ethylene. Chem. Phys. Lett. 294, 397 (1998)

    Article  ADS  Google Scholar 

  86. K.K. Lehmann, G. Scoles, Intramolecular dynamics from Eigenstate-resolved infrared spectra. Annu. Rev. Phys. Chem. 45, 241 (1994)

    Article  ADS  Google Scholar 

  87. H. Coufal, Photothermal spectroscopy and its analytical application. Fresenius J. Anal. Chem. 337, 835 (1990)

    Article  Google Scholar 

  88. F. Träger, Surface analysis by laser-induced thermal waves. Laser Optoelektron. 18, 216 (1986); H. Coufal, F. Träger, T.J. Chuang, A.C. Tam, High sensitivity photothermal surface spectroscopy with polarization modulation. Surf. Sci. 145, L504 (1984)

    Google Scholar 

  89. P.E. Siska, Molecular-beam studies of Penning ionization. Rev. Mod. Phys. 65, 337 (1993)

    Article  ADS  Google Scholar 

  90. Y.Y. Kuzyakov, N.B. Zorov, Atomic ionization spectrometry. Crit. Rev. Anal. Chem. 20, 221 (1988)

    Article  Google Scholar 

  91. G.S. Hurst, M.G. Payne, S.P. Kramer, J.P. Young, Resonance ionization spectroscopy and single atom detection. Rev. Mod. Phys. 51, 767 (1979)

    Article  ADS  Google Scholar 

  92. G.S. Hurst, M.P. Payne, S.P. Kramer, C.H. Cheng, Counting the atoms. Phys. Today 33, 24 (1980)

    Article  Google Scholar 

  93. M. Keil, H.G. Krämer, A. Kudell, M.A. Baig, J. Zhu, W. Demtröder, W. Meyer, Rovibrational structures of the pseudo-rotating lithium trimer \(\mathrm{Li_{3}}\). J. Chem. Phys. 113, 7414 (2000)

    Article  ADS  Google Scholar 

  94. L. Wöste, Zweiphotonen-Ionisation. Laser Optoelektron. 15, 9 (1983)

    Google Scholar 

  95. G. Delacretaz, J.D. Garniere, R. Monot, L. Wöste, Photoionization and fragmentation of alkali metal clusters in supersonic molecular beams. Appl. Phys. B 29, 55 (1982)

    Article  ADS  Google Scholar 

  96. H.J. Foth, J.M. Gress, C. Hertzler, W. Demtröder, Sub-Doppler laser spectroscopy of \(\mathrm{Na_{3}}\). Z. Phys. D 18, 257 (1991)

    Article  ADS  Google Scholar 

  97. V.S. Letokhov, Laser Photoionization Spectroscopy (Academic, Orlando, 1987)

    Google Scholar 

  98. G. Hurst, M.G. Payne, Principles and Applications of Resonance Ionization Spectroscopy (Hilger, Bristol, 1988)

    Google Scholar 

  99. K.T. Flanagan et al., Collinear Resonance Ionization Spectroscopy of Neutron deficient Francium Isotopes. Phys. Rev. Lett. 111, 212501 (2013)

    Article  ADS  Google Scholar 

  100. D.H. Parker, Laser ionization spectroscopy and mass spectrometry, in Ultrasensitive Laser Spectroscopy, ed. by D.S. Kliger (Academic, New York, 1983)

    Google Scholar 

  101. V. Beutel, G.L. Bhale, M. Kuhn, W. Demtröder, The ionization potential of \(\mathrm{Ag_{2}}\). Chem. Phys. Lett. 185, 313 (1991)

    Article  ADS  Google Scholar 

  102. H.J. Neusser, U. Boesl, R. Weinkauf, E.W. Schlag, High-resolution laser mass spectrometer. Int. J. Mass Spectrom. 60, 147 (1984)

    Article  ADS  Google Scholar 

  103. J.E. Parks, N. Omeneto (eds.), Resonance Ionization Spectroscopy. Inst. Phys. Conf. Ser., vol. 114 (1990); D.M. Lübman (ed.), Lasers and Mass Spectrometry (Oxford Univ. Press, London, 1990)

    Google Scholar 

  104. P. Peuser, G. Herrmann, H. Rimke, P. Sattelberger, N. Trautmann, W. Ruster, F. Ames, J. Bonn, H.J. Kluge, V. Krönert, E.W. Otten, Trace detection of plutonium by three-step photoionization with a laser system pumped by a copper vapor laser. Appl. Phys. B 38, 249 (1985)

    Article  ADS  Google Scholar 

  105. http://mars.jpl.nasa.gov.msl

  106. D. Popescu, M.L. Pascu, C.B. Collins, B.W. Johnson, I. Popescu, Use of space charge amplification techniques in the absorption spectroscopy of Cs and \(\mathrm{Cs_{2}}\). Phys. Rev. A 8, 1666 (1973)

    Article  ADS  Google Scholar 

  107. K. Niemax, Spectroscopy using thermionic diode detectors. Appl. Phys. B 38, 1 (1985)

    Article  Google Scholar 

  108. R. Beigang, W. Makat, A. Timmermann, A thermionic ring diode for high resolution spectroscopy. Opt. Commun. 49, 253 (1984)

    Article  ADS  Google Scholar 

  109. R. Beigang, A. Timmermann, The thermionic annular diode: a sensitive detector for highly excited atoms and molecules. Laser Optoelektron. 4, 252 (1984)

    Google Scholar 

  110. D.S. King, P.K. Schenck, Optogalvanic spectroscopy. Laser Focus 14, 50 (1978)

    Google Scholar 

  111. J.E.M. Goldsmith, J.E. Lawler, Optogalvanic spectroscopy. Contemp. Phys. 22, 235 (1981)

    Article  ADS  Google Scholar 

  112. B. Barbieri, N. Beverini, A. Sasso, Optogalvanic spectroscopy. Rev. Mod. Phys. 62, 603 (1990)

    Article  ADS  Google Scholar 

  113. V.N. Ochkin, N.G. Preobrashensky, N.Y. Shaparev, Opto-galvanic Effect in Ionized Gases (CRC Press, Boca Raton, 1999)

    Google Scholar 

  114. M.A. Zia, B. Sulemar, M.A. Baig, Two-photon laser optogalvanic spectroscopy of the Rydberg states of Mercury by RF-discharge. J. Phys. B, At. Mol. Opt. Phys. 36, 4631 (2003)

    Article  ADS  Google Scholar 

  115. K. Narayanan, G. Ullas, S.B. Rai, A two step optical double resonance study of a Fe–Ne hollow cathode discharge using optogalvanic detection. Opt. Commun. 184, 102 (1991)

    Google Scholar 

  116. C.R. Webster, C.T. Rettner, Laser optogalvanic spectroscopy of molecules. Laser Focus 19, 41 (1983); D. Feldmann, Optogalvanic spectroscopy of some molecules in discharges: \(\mathrm{NH_{2}}\), \(\mathrm{NO_{2}}\), \(\mathrm{A_{2}}\) and \(\mathrm{N_{2}}\). Opt. Commun. 29, 67 (1979)

    Google Scholar 

  117. K. Kawakita, K. Fukada, K. Adachi, S. Maeda, C. Hirose, Doppler-free optogalvanic spectrum of \({ \mathrm {He_{2}} }(b \, {}^{3}_{}\mathrm{\varPi}_{g} - f \, {}^{3}_{}\mathrm{\Delta}_{u} )\) transitions. J. Chem. Phys. 82, 653 (1985)

    Article  ADS  Google Scholar 

  118. K. Myazaki, H. Scheingraber, C.R. Vidal, Optogalvanic double-resonance spectroscopy of atomic and molecular discharge, in Laser Spectroscopy VI, ed. by H.P. Weber, W Lüthy. Springer Ser. Opt. Sci., vol. 40 (Springer, Berlin, 1983), p. 93

    Chapter  Google Scholar 

  119. J.C. Travis, Analytical optogalvanic spectroscopy in flames, in Analytical Laser Spectroscopy, ed. by S. Martellucci, A.N. Chester (Plenum, New York, 1985), p. 213

    Chapter  Google Scholar 

  120. D. King, P. Schenck, K. Smyth, J. Travis, Direct calibration of laser wavelength and bandwidth using the optogalvanic effect in hollow cathode lamps. Appl. Opt. 16, 2617 (1977)

    Article  ADS  Google Scholar 

  121. V. Kaufman, B. Edlen, Reference wavelength from atomic spectra in the range 15 Å to 25,000 Å. J. Phys. Chem. Ref. Data 3, 825 (1974)

    Article  ADS  Google Scholar 

  122. A. Giacchetti, R.W. Stanley, R. Zalubas, Proposed secondary standard wavelengths in the spectrum of thorium. J. Opt. Soc. Am. 60, 474 (1969)

    Article  ADS  Google Scholar 

  123. J.E. Lawler, A.I. Ferguson, J.E.M. Goldsmith, D.J. Jackson, A.L. Schawlow, Doppler-free optogalvanic spectroscopy, in Laser Spectroscopy IV, ed. by H. Walther, K.W. Rothe. Springer Ser. Opt. Sci., vol. 21 (Springer, Berlin, 1979), p. 188

    Chapter  Google Scholar 

  124. W. Bridges, Characteristics of an optogalvanic effect in cesium and other gas discharge plasmas. J. Opt. Soc. Am. 68, 352 (1978)

    Article  ADS  Google Scholar 

  125. A. Persson et al., Evaluation of intracavity optogalvanic spectroscopy for radio-carbon measurements. Anal. Chem. 85(14), 6790–6798 (2013)

    Article  Google Scholar 

  126. R.S. Stewart, J.E. Lawler (eds.), Optogalvanic Spectroscopy (Hilger, London, 1991)

    Google Scholar 

  127. R.J. Saykally, R.C. Woods, High resolution spectroscopy of molecular ions. Annu. Rev. Phys. Chem. 32, 403 (1981)

    Article  ADS  Google Scholar 

  128. C.S. Gudeman, R.J. Saykally, Velocity modulation infrared laser spectroscopy of molecular ions. Annu. Rev. Phys. Chem. 35, 387 (1984)

    Article  ADS  Google Scholar 

  129. C.E. Blom, K. Müller, R.R. Filgueira, Gas discharge modulation using fast electronic switches. Chem. Phys. Lett. 140, 489 (1987)

    Article  ADS  Google Scholar 

  130. G. Lan, H.D. Tholl, J.W. Farley, Double-modulation spectroscopy of molecular ions: eliminating the background in velocity-modulation spectroscopy. Rev. Sci. Instrum. 62, 944 (1991)

    Article  ADS  Google Scholar 

  131. M.B. Radunsky, R.J. Saykally, Electronic absorption spectroscopy of molecular ions in plasmas by dye laser velocity modulation spectroscopy. J. Chem. Phys. 87, 898 (1987)

    Article  ADS  Google Scholar 

  132. K.J. Button (ed.), Infrared and Submillimeter Waves (Academic Press, New York, 1979)

    Google Scholar 

  133. (a) Wikipedia, List of molecules in interstellar space. http://en.wikipedia.org/wiki/List_of_molecules_in_interstellar_space; H.S.P. Müller, F. Schlöder, J. Stutzki, G. Winnewisser, The cologne database for molecular spectroscopy. J. Mol. Struct. 742, 215 (2005); (b) K.M. Evenson, R.J. Saykally, D.A. Jennings, R.E. Curl, J.M. Brown, Far infrared laser magnetic resonance, in Chemical and Biochemical Applications of Lasers, ed. by C.B. Moore (Academic Press, New York, 1980), Chap. V

  134. P.B. Davies, K.M. Evenson, Laser magnetic resonance (LMR) spectroscopy of gaseous free radicals, in Laser Spectroscopy II, ed. by S. Haroche, J.C. Pebay-Peyroula, T.W. Hänsch, S.E. Harris. Lect. Notes Phys., vol. 43 (Springer, Berlin, 1975)

    Google Scholar 

  135. W. Urban, W. Herrmann, Zeeman modulation spectroscopy with spin-flip Raman laser. Appl. Phys. 17, 325 (1978)

    Article  ADS  Google Scholar 

  136. K.M. Evenson, C.J. Howard, Laser magnetic resonance spectroscopy, in Laser Spectroscopy, ed. by R.G. Brewer, A. Mooradian (Plenum, New York, 1974)

    Google Scholar 

  137. A. Hinz, J. Pfeiffer, W. Bohle, W. Urban, Mid-infrared laser magnetic resonance using the Faraday and Voigt effects for sensitive detection. Mol. Phys. 45, 1131 (1982)

    Article  ADS  Google Scholar 

  138. Y. Ueda, K. Shimoda, Infrared laser Stark spectroscopy, in Laser Spectroscopy II, ed. by S. Haroche, J.C. Pebay-Peyroula, T.W. Hänsch. Lecture Notes Phys., vol. 43 (Springer, Berlin, 1975), p. 186

    Chapter  Google Scholar 

  139. K. Uehara, T. Shimiza, K. Shimoda, High resolution Stark spectroscopy of molecules by infrared and far infrared masers. IEEE J. Quantum Electron. 4, 728 (1968)

    Article  ADS  Google Scholar 

  140. K. Uehara, K. Takagi, T. Kasuya, Stark modulation spectrometer, using a wideband Zeeman-tuned He–Xe laser. Appl. Phys. 24, 187–195 (1981)

    Article  ADS  Google Scholar 

  141. L.R. Zink, D.A. Jennings, K.M. Evenson, A. Sasso, M. Inguscio, New techniques in laser Stark spectroscopy. J. Opt. Soc. Am. B 4, 1173 (1987)

    Article  ADS  Google Scholar 

  142. K.M. Evenson, R.J. Saykally, D.A. Jennings, R.F. Curl, J.M. Brown, Far infrared laser magnetic resonance, in Chemical and Biochemical Applications of Lasers, vol. V, ed. by C.B. Moore (Academic Press, New York, 1980)

    Google Scholar 

  143. M. Inguscio, Coherent atomic and molecular spectroscopy in the far infrared. Phys. Scr. 37, 699 (1989)

    Article  ADS  Google Scholar 

  144. W.H. Weber, K. Tanaka, T. Kanaka (eds.), Stark and Zeeman techniques in laser spectroscopy. J. Opt. Soc. Am. B 4, 1141 (1987)

    Google Scholar 

  145. J.L. Kinsey, Laser-induced fluorescence. Annu. Rev. Phys. Chem. 28, 349 (1977)

    Article  ADS  Google Scholar 

  146. A. Delon, R. Jost, Laser-induced dispersed fluorescence spectroscopy of 107 vibronic levels of \(\mathrm{NO_{2}}\) ranging from 12,000 to 17,600 cm−1. J. Chem. Phys. 114, 331 (2001)

    Article  ADS  Google Scholar 

  147. M.A. Clyne, I.S. McDermid, Laser-induced fluorescence: electronically excited states of small molecules. Adv. Chem. Phys. 50, 1 (1982)

    Google Scholar 

  148. J.R. Lakowicz, Topics in Fluorescence Spectroscopy (Plenum, New York, 1991); J.N. Miller, Fluorescence Spectroscopy (Ellis Harwood, Singapore, 1991); O.S. Wolflich (ed.), Fluorescence Spectroscopy (Springer, Berlin, 1992)

    Google Scholar 

  149. C. Schütte, The Theory of Molecular Spectroscopy (North-Holland, Amsterdam, 1976)

    Google Scholar 

  150. G. Herzberg, Molecular Spectra and Molecular Structure, vol. I (Van Nostrand, New York, 1950)

    Google Scholar 

  151. G. Höning, M. Cjajkowski, M. Stock, W. Demtröder, High resolution laser spectroscopy of \(\mathrm{Cs_{2}}\). J. Chem. Phys. 71, 2138 (1979)

    Article  ADS  Google Scholar 

  152. C. Amiot, W. Demtröder, C.R. Vidal, High resolution Fourier-spectroscopy and laser spectroscopy of \(\mathrm{Cs_{2}}\). J. Chem. Phys. 88, 5265 (1988)

    Article  ADS  Google Scholar 

  153. C. Amiot, Laser-induced fluorescence of \(\mathrm{Rb_{2}}\). J. Chem. Phys. 93, 8591 (1990)

    Article  ADS  Google Scholar 

  154. R. Bacis, S. Chunassy, R.W. Fields, J.B. Koffend, J. Verges, High resolution and sub-Doppler Fourier transform spectroscopy. J. Chem. Phys. 72, 34 (1980)

    Article  ADS  Google Scholar 

  155. R. Rydberg, Graphische Darstellung einiger bandenspektroskopischer Ergebnisse. Z. Phys. 73, 376 (1932)

    Article  ADS  MATH  Google Scholar 

  156. O. Klein, Zur Berechnung von Potentialkurven zweiatomiger Moleküle mit Hilfe von Spekraltermen. Z. Phys. 76, 226 (1938)

    Article  ADS  Google Scholar 

  157. A.L.G. Rees, The calculation of potential-energy curves from band spectroscopic data. Proc. Phys. Soc. Lond., Sect. A 59, 998 (1947)

    Article  ADS  MATH  Google Scholar 

  158. R.N. Zare, A.L. Schmeltekopf, W.J. Harrop, D.L. Albritton, J. Mol. Spectrosc. 46, 37 (1973)

    Article  ADS  Google Scholar 

  159. G. Ennen, C. Ottinger, Laser fluorescence measurements of the \({}_{}^{7}\mathrm{LiD} (X \, {}^{1}_{}\mathrm{\varSigma }_{} ^{+})\)-potential up to high vibrational quantum numbers. Chem. Phys. Lett. 36, 16 (1975)

    Article  ADS  Google Scholar 

  160. M. Raab, H. Weickenmeier, W. Demtröder, The dissociation energy of the cesium dimer. Chem. Phys. Lett. 88, 377 (1982)

    Article  ADS  Google Scholar 

  161. C.E. Fellows, The NaLi 1 1 Σ+(X) electronic ground state dissociation limit. J. Chem. Phys. 94, 5855 (1991)

    Article  ADS  Google Scholar 

  162. A.G. Gaydon, Dissociation Energies and Spectra of Diatomic Molecules (Chapman and Hall, London, 1968)

    Google Scholar 

  163. H. Atmanspacher, H. Scheingraber, C.R. Vidal, Laser-induced fluorescence of the MgCa molecule. J. Chem. Phys. 82, 3491 (1985)

    Article  ADS  Google Scholar 

  164. R.J. LeRoy, Molecular Spectroscopy, Specialist Periodical Reports, vol. 1 (Chem. Soc., Burlington Hall, London, 1973), p. 113

    Book  Google Scholar 

  165. W. Demtröder, W. Stetzenbach, M. Stock, J. Witt, Lifetimes and Franck–Condon factors for the \(B \, {}^{1}_{}\mathrm{\varPi}_{u} \to X \, {}^{1}_{}\mathrm{\varSigma}_{g} ^{+}\)-system of \(\mathrm {Na_{2}}\). J. Mol. Spectrosc. 61, 382 (1976)

    Article  ADS  Google Scholar 

  166. E.J. Breford, F. Engelke, Laser-induced fluorescence in supersonic nozzle beams: applications to the NaK \(D \, {}^{1}_{}\mathrm{\varPi }_{} \to X \, {}^{1}_{}\mathrm{\varSigma}_{} \) and \(D \, {}^{1}_{}\mathrm{\varPi}_{} \to X \, {}^{3}_{}\mathrm{\varSigma}_{} \) systems. Chem. Phys. Lett. 53, 282 (1978); E.J. Breford, F. Engelke, J. Chem. Phys. 71, 1949 (1979)

    Article  ADS  Google Scholar 

  167. J. Tellinghuisen, G. Pichler, W.L. Snow, M.E. Hillard, R.J. Exton, Analysis of the diffuse bands near 6100 Å in the fluorescence spectrum of \(\mathrm{Cs_{2}}\). Chem. Phys. 50, 313 (1980)

    Article  ADS  Google Scholar 

  168. H. Scheingraber, C.R. Vidal, Discrete and continuous Franck–Condon factors of the \(\mathrm{Mg_{2}}\) \(A \, {}^{1}_{}\mathrm {\varSigma}_{u} - X \, {}^{1}_{}I_{s} \) system and their J dependence. J. Chem. Phys. 66, 3694 (1977)

    Article  ADS  Google Scholar 

  169. C.A. Brau, J.J. Ewing, Spectroscopy, kinetics and performance of rare-gas halide lasers, in Electronic Transition Lasers, ed. by J.I. Steinfeld (MIT Press, Cambridge, 1976)

    Google Scholar 

  170. D. Eisel, D. Zevgolis, W. Demtröder, Sub-Doppler laser spectroscopy of the NaK-molecule. J. Chem. Phys. 71, 2005 (1979)

    Article  ADS  Google Scholar 

  171. E.V. Condon, Nuclear motions associated with electronic transitions in diatomic molecules. Phys. Rev. 32, 858 (1928)

    Article  ADS  MATH  Google Scholar 

  172. J. Tellinghuisen, The McLennan bands of \(\mathrm{I_{2}}\): a highly structured continuum. Chem. Phys. Lett. 29, 359 (1974)

    Article  ADS  Google Scholar 

  173. H.J. Vedder, M. Schwarz, H.J. Foth, W. Demtröder, Analysis of the perturbed \(\mathrm{NO_{2}}\) \({}^{2}_{}\mathrm{B}_{2} \to {}^{2}_{}\mathrm{A}_{1} \) system in the 591.4–592.9 nm region based on sub-Doppler laser spectroscopy. J. Mol. Spectrosc. 97, 92 (1983)

    Article  ADS  Google Scholar 

  174. A. Delon, R. Jost, Laser-induced dispersed fluorescence spectra of jet-cooled \(\mathrm{NO_{2}}\). J. Chem. Phys. 95, 5686 (1991)

    Article  ADS  Google Scholar 

  175. Th. Zimmermann, H.J. Köppel, L.S. Cederbaum, G. Persch, W. Demtröder, Confirmation of random-matrix fluctuations in molecular spectra. Phys. Rev. Lett. 61, 3 (1988)

    Article  ADS  Google Scholar 

  176. K.K. Lehmann, St.L. Coy, The optical spectrum of \(\mathrm{NO_{2}}\): is it or isn’t it chaotic? Ber. Bunsenges. Phys. Chem. 92, 306 (1988)

    Article  Google Scholar 

  177. J.M. Gomez-Llorentl, H. Taylor, Spectra in the chaotic region: a classical analysis for the sodium trimer. J. Chem. Phys. 91, 953 (1989)

    Article  ADS  Google Scholar 

  178. K.L. Kompa, Chemical Lasers. Topics Curr. Chem., vol. 37 (Springer, Berlin, 1975)

    Google Scholar 

  179. R. Schnabel, M. Kock, Time-Resolved nonlinear LIF-techniques for a combined lifetime and branching fraction measurements. Phys. Rev. A 63, 125 (2001)

    Google Scholar 

  180. P.J. Dagdigian, H.W. Cruse, A. Schultz, R.N. Zare, Product state analysis of BaO from the reactions \({ \mathrm{Ba} } + { \mathrm{CO_{2}} }\) and \({ \mathrm{Ba} } + { \mathrm{O_{2}} }\). J. Chem. Phys. 61, 4450 (1974)

    Article  ADS  Google Scholar 

  181. J.G. Pruett, R.N. Zare, State-to-state reaction rates: Ba+HF(v=0)→BaF(v=0−12)+H′′. J. Chem. Phys. 64, 1774 (1976)

    Article  ADS  Google Scholar 

  182. H.W. Cruse, P.J. Dagdigian, R.N. Zare, Crossed beam reactions of barium with hydrogen halides. Faraday Discuss. Chem. Soc. 55, 277 (1973)

    Article  Google Scholar 

  183. Y. Nozaki et al., Identification of Si and SiH. J. Appl. Phys. 88, 5437 (2000)

    Article  ADS  Google Scholar 

  184. V. Hefter, K. Bergmann, Spectroscopic detection methods, in Atomic and Molecular Beam Methods, vol. I, ed. by G. Scoles (Oxford Univ. Press, New York, 1988), p. 193

    Google Scholar 

  185. J.E.M. Goldsmith, Recent advances in flame diagnostics using fluorescence and ionisation techniques, in Laser Spectroscopy VIII, ed. by S. Svanberg, W. Persson. Springer Ser. Opt. Sci., vol. 55 (Springer, Berlin, 1987), p. 337

    Chapter  Google Scholar 

  186. J. Wolfrum (ed.), Laser diagnostics in combustion. Appl. Phys. B 50, 439 (1990)

    Google Scholar 

  187. T.P. Hughes, Plasma and Laser Light (Hilger, Bristol, 1975)

    Google Scholar 

  188. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, Berlin, 2006)

    Book  Google Scholar 

  189. L.J. Radziemski, D.A. Cremers, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, New York, 2006). ISBN 0-470-09299-8

    Google Scholar 

  190. I. Schechter, A.W. Miziolek, V. Palleschi, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge University Press, Cambridge, 2006). ISBN 0-521-85274-9

    Google Scholar 

  191. R. Ahmed, M.-A. Baig, On the optimization for enhanced dual-pulse laser-induced breakdown spectroscopy. IEEE Trans. Plasma Sci. 38(8), 2052–2055 (2010). doi:10.1109/TPS.2010.2050784. ISSN 0093-3813

    Article  ADS  Google Scholar 

  192. M. Bellini, P. DeNatale, G. DiLonardo, L. Fusina, M. Inguscio, M. Prevedelli, Tunable far infrared spectroscopy of \({}_{}^{16}\mathrm{O_{3}}\) ozone. J. Mol. Spectrosc. 152, 256 (1992); J.R. Albani, Principles and Applications of Fluorescence Spectroscopy (Wiley-Blackwell, New York, 2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demtröder, W. (2015). Doppler-Limited Absorption and Fluorescence Spectroscopy with Lasers. In: Laser Spectroscopy 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44641-6_1

Download citation

Publish with us

Policies and ethics