Advertisement

Geometric Issues in Reconstruction of Virtual Heritage Involving Large Populations

  • Daniel Thalmann
  • Barbara Maïm
  • Jonathan Maïm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8355)

Abstract

This Chapter discusses the methods involved in the generation of large crowds of Virtual Humans in environments like cities. We focus on the geometric aspects of these methods in the different steps involved: scaler, simulator, renderer, path planner, and behaviour handler. We emphasize the application of these methods to the field of Cultural Heritage, recreating old cities with population living their life. In particular, we present examples from Pompeii and discuss the interaction between the environment and the behaviour of the Romans.

Keywords

Crowd Simulation Behavioral Animation LODs Path Planning Region Of Interest Scaler Behavior Handler Simulation of crowd collisions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yersin, B., Maïm, J., Thalmann, D.: Unique Instances for Crowds. IEEE Computer Graphics and Applications 29(6), 82–90 (2009)CrossRefGoogle Scholar
  2. 2.
    Maïm, J., Yersin, B., Pettré, J., Thalmann, D.: YaQ: An Architecture for Real-Time Navigation and Rendering of Varied Crowds. IEEE Computer Graphics and Applications 29(4), 44–53 (2009)CrossRefGoogle Scholar
  3. 3.
    Pettré, J., de HerasCiechomski, P., Maïm, J., Yersin, B., Laumond, J.P., Thalmann, D.: Real-time navigating crowds: scalable simulation and rendering: Research articles. Comput. Animat. Virtual Worlds 17(3-4), 445–455 (2006)CrossRefGoogle Scholar
  4. 4.
    Pettré, J., Grillon, H., Thalmann, D.: Crowds of moving objects: Navigation plan-ning and simulation. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3062–3067 (2007)Google Scholar
  5. 5.
    Magnenat-Thalmann, N., Thalmann, D.: Handbook of Virtual Humans. John Wiley (2004)Google Scholar
  6. 6.
    Çapin, T., Pandzic, I., Magnenat Thalmann, N., Thalmann, D.: Avatars in Networked Virtual Environments. John Wiley (1999)Google Scholar
  7. 7.
  8. 8.
    Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In: SIGGRAPH 1987: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 25–34. ACM Press, New York (1987)CrossRefGoogle Scholar
  9. 9.
    Heigeas, L., Luciani, A., Thollot, J., Castagné, N.: A physically-basedparticle model of emergent crowd behaviors. In: Graphicon (2003)Google Scholar
  10. 10.
    Kirchner, A., Shadschneider, A.: Simulation of evacuation processes using abionics-inspired cellular automaton model for pedestrian dynamics. Physica A, 237–244 (2001)Google Scholar
  11. 11.
    Ronald, A., Metoyer, R.A., Hodgins, J.K.: Reactive pedestrian path following from examples. In: CASA 20: Proceedings of the 16th International Conference on ComputerAnimation and Social Agents (CASA 2003), p. 149. IEEEComputer Society, Washington, DC (2003)Google Scholar
  12. 12.
    Bayazit, O.B., Lien, J.M., Amato, N.M.: Better group behaviors in complexenvironments using global roadmaps. In: Proceedings of the Eighth International Conference on Artificial Life, pp. 362–370. MITPress, Cambridge (2003)Google Scholar
  13. 13.
    Sung, M., Kovar, L., Gleicher, M.: Fast and accurate goal-directed motionsynthesis for crowds. In: SCA 2005: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 291–300. ACM Press, New York (2005)CrossRefGoogle Scholar
  14. 14.
    Lau, M., Kuffner, J.: Precomputed search trees: Planning for interactive goaldrive-nanimation. In: ACM SIGGRAPH / Eurographics Symposium on Computer Animation, pp. 299–308 (September 2006)Google Scholar
  15. 15.
    Lamarche, F., Donikian, S.: Crowd of virtual humans: a new approach forreal time navigation in complex and structured environments. Computer Graphics Forum 23(3), 509–518 (2004)CrossRefGoogle Scholar
  16. 16.
    Kamphuis, A., Overmars, M.H.: Finding paths for coherent groups using clear-ance. In: SCA 2004: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 19–28 (2004)Google Scholar
  17. 17.
    Loscos, C., Marchal, D., Meyer, A.: Intuitive crowd behaviour in denseurban environments using local laws. In: TPCG 2003: Proceedings of the Theory and Practice of Computer Graphics, Washington, DC, USA, p. 122 (2003)Google Scholar
  18. 18.
    Helbing, D., Molnár, P., Schweitzer, F.: Computer simulations of pedestrian dynamics and trail formation. Evolution of Natural Structures, 229–234 (1994)Google Scholar
  19. 19.
    Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487–490 (2000)CrossRefGoogle Scholar
  20. 20.
    Hughes, R.L.: A continuum theory for the flow of pedestrians. Transportation Research PartB: Methodological 36(29), 507–535 (2002)CrossRefGoogle Scholar
  21. 21.
    Chenney, S.: Flow tiles. In: SCA 2004: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Aire-la-Ville, Switzerland, pp. 233–242 (2004)Google Scholar
  22. 22.
    Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. In: SIGGRAPH 2006:ACM SIGGRAPH 2006 Papers, pp. 1160–1168. ACM, New York (2006)Google Scholar
  23. 23.
    Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. Eurographics 2007: ComputerGraphics Forum 26(3) (2007)Google Scholar
  24. 24.
    Paris, S., Pettré, J., Donikian, S.: Pedestrian reactive for crowd simulation: A predictive approach. Computer Graphics Forum 26(3), 665–674 (2007), Eurographics 2007Google Scholar
  25. 25.
    Hoon Lee, K., Geol Choi, M., Hong, Q., Lee, J.: Group behavior from video: a datadrivenapproach to crowd simulation. In: SCA 2007: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 109–118 (2007)Google Scholar
  26. 26.
    Thalmann, D., Musse, S.R.: Crowd Simulation, 2nd edn. Springer (2012)Google Scholar
  27. 27.
    Morini, F., Yersin, B., Maïm, J., Thalmann, D.: Real-Time Scalable Motion Planning for Crowds. The Visual Computer 24(10), 859–870 (2008)CrossRefGoogle Scholar
  28. 28.
    Glardon, P., Boulic, R., Thalmann, D.: PCA-based walking engine using motioncap-ture data. In: Proc. of Computer Graphics International, pp. 292–298 (2004)Google Scholar
  29. 29.
    Williams, L.: Casting curved shadows on curved surfaces. In: SIGGRAPH 1978: Proceedingsof the 5th Annual Conference on Computer Graphics and Interactive Techniques, pp. 270–274. ACM Press, NY (1978)Google Scholar
  30. 30.
    Maïm, J., Haegler, S., Yersin, B., Müller, P., Thalmann, D., Van Gool, L.: Populating Ancient Pompeii with Crowds of Virtual Romans. In: The 8th International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST 2007), pp. 109–116 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daniel Thalmann
    • 1
  • Barbara Maïm
    • 2
  • Jonathan Maïm
    • 2
  1. 1.Institute for Media InnovationNanyang Technological University and EPFLSwitzerland
  2. 2.MinshLausanneSwitzerland

Personalised recommendations