Geometry vs Semantics: Open Issues on 3D Reconstruction of Architectural Elements

  • Livio De Luca
  • David Lo Buglio
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8355)


Three-dimensional representation is becoming an effective support for the documentation of the state of conservation of heritage artefacts, for the study of its transformations and for cultural diffusion. 3D digitization technologies now offer effective means to observe and analyze historic buildings with more accuracy, completeness and timeliness. Nevertheless, this produces a real problem of information overload. The growing mass of un-interpreted data make emerge a need for innovative methodologies assisting data processing, sorting and analysis by researchers who want to use it for advancing the knowledge of cultural heritage. Exploring the informational value of these new representation systems allows introducing new approaches to the analysis of artefacts so distant in space but so close in features (typologies, styles, compositional rules, etc.). This chapter presents some research avenues for defining a geometric/semantic description model of architectural elements in order to integrate the informative value of 3D digitization in intelligible representations.


Architecture heritage representation 3D digitization epistemology knowledge geometry semantics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boehler, W., Marbs, A.: 3D scanning instruments. In: Proceedings of the CIPA WG 6th Int. Workshop on Scanning for Cultural Heritage, Corfu, Greece (2002)Google Scholar
  2. 2.
    Debevec, P., Taylor, C., Malik, J.: Modeling and rendering architecture from photographs: a hybrid geometry and image-based approach. In: Proceedings of SIGGRAPH, New Orleans, LA, pp. 11–20 (1996)Google Scholar
  3. 3.
    El Hakim, S., Beraldin, A., Picard, M., Vettore, A.: Effective 3D modeling of heritage sites. In: Proceedings of the 4th Int. Conf. on 3D Digital Imaging and Modeling, Canada, pp. 302–309 (2003)Google Scholar
  4. 4.
    Doer, M.: The CIDOC CRM: an ontological approach to semantic interoperability of metadata. AI Magazine, Special Issue 24(3), 75–92 (2003)Google Scholar
  5. 5.
    Attene, M., Robbiano, F., Spagnuolo, M., Falcidieno, B.: Characterization of 3D shape parts for semantic annotation. Computer Aided Des. 41(10), 756–763 (2009)CrossRefGoogle Scholar
  6. 6.
    Manferdini, A.M., Remondino, F., Baldissini, S., Gaiani, M., Benedetti, B.: 3D modeling and semantic classification of archaeological finds for management and visualization in 3D archaeological databases. In: Proceedings of the 14th Int. Conf. on Virtual Systems and MultiMedia (VSMM), Cyprus, pp. 221–228 (2008)Google Scholar
  7. 7.
    Lo Buglio, D., De Luca, L.: Critical review of 3D digitization methods and techniques applied to the field of architectural heritage: methodological and cognitive issues. In: The 12th International Symposium on Virtual Reality, Archaeology and Cultural Heritage, Vast 2011, pp. 5–12. Eurographics press, Prato (2011)Google Scholar
  8. 8.
    Palladio, A.: The Four Books of Architecture. Dover Publications, New York (1965) (1750)Google Scholar
  9. 9.
    Blaise, J.-Y., Dudek, I.: Modélisation informationnelle: concepts fondamentaux. Visualiser pour raisonner sur des connaissances architecturales. MIA Journal 1, 143–154 (2006)Google Scholar
  10. 10.
    Borges, J.L.: De la rigueur de la science. In: L’auteur et autres textes, pp. 221–221. Gallimard, Paris (1982)Google Scholar
  11. 11.
    Mediati, D.: L’occhio sul mondo per una semiotica del punto di vista. Rubbettino, Soveria Mannelli (2008)Google Scholar
  12. 12.
    Blaise, J.-Y., Dudek, I.: Modélisation Informationnelle, Imprimerie du CNRS – Provence (2006)Google Scholar
  13. 13.
    De Luca, L., Driscu, T., Labrosse, D., Peyrols, E., Berthelot, M.: Digital Anastylosis of the cloister of Saint-Guilhem-le-Desert. In: Research in Interactive Design. Proceedings of IDMME-Virtual Concept 2008, Beijing, vol. 3 (2008)Google Scholar
  14. 14.
    UMR 3495 CNRS/MCC MAP Gamsau: Nubes project, (find June 26, 2011)
  15. 15.
    Havemann, S., Fellner, D.: Generative parametric design of Gothic window tracery. In: Shape Modeling International, pp. 350–353 (2004)Google Scholar
  16. 16.
    Université de Caen De Caen Basse-Normandie: Projet de restitution. Le Plan de Rome.Restituer la Rome Antique, (find June 3, 2011)
  17. 17.
    Perouse de Montclos, J.M.: Architecture vocabulaire: principes d’analyse scientifique. Imprimerie Nationale, Paris (1972)Google Scholar
  18. 18.
    Forssman, E.: Palladio e le colonne. Bollettino del Centro Internazionale di Studi di Architettura Andrea Palladio. Vicenza, Italy (1978)Google Scholar
  19. 19.
    Migliari, R., Docci, L.: Geometria e architettura. Gangemi, Rome (2000)Google Scholar
  20. 20.
    Thompson, D.: On Growth and Form. Cambridge University Press, Cambridge (1942)zbMATHGoogle Scholar
  21. 21.
    De Luca, L.: Relevé et multi-représentations du patrimoine architectural. Définition d’une approche hybride de reconstruction 3D d’édifices. PhD Thesis, Arts et Métiers Paris Tech (CER d’Aix-en- Provence), Paris (2006)Google Scholar
  22. 22.
    Monge, G.: Géométrie descriptive. Bibliothèque Nationale de France (BNF), Paris (1799)Google Scholar
  23. 23.
    Desargues, G.: Bruillon projet d’exemple d’une manière universelle du S.G.D. Touchant la pratique du trait à preuves pour la coupe des pierres en architecture. Bibliothèque Nationale de France (BNF), Paris (1640)Google Scholar
  24. 24.
    Vallée, L.: Spécimen de coupe de pierres, contenant les principes généraux du trait et leur application aux murs, aux plate-bande, aux berceaux, aux voûtes sphériques, aux voûtes de révolution, aux voûtes à base polygonale. Bibliothèque Nationale de France (BNF), Paris (1853)Google Scholar
  25. 25.
    De Luca, L., Veron, P., Florenzano, M.: A generic formalism for the semantic modeling and representation of architectural elements. The Visual Computer 23(3), 181–205 (2007)CrossRefGoogle Scholar
  26. 26.
    Hirschmueller, H.: Stereo processing by semi-global matching and mutual information. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(2), 328–341 (2008)CrossRefGoogle Scholar
  27. 27.
    Remondino, F., El-Hakim, S., Gruen, A., Zhang, L.: Development and performance analysis of image matching for detailed surface reconstruction of heritage objects. IEEE Signal Processing Magazine 25(4), 55–65 (2008)CrossRefGoogle Scholar
  28. 28.
    Hiep, V.H., Keriven, R., Labatut, P., Pons, J.P.: Towards high-resolution large-scale multi-view stereo. In: Proceedings CVPR, Kyoto, Japan (2009)Google Scholar
  29. 29.
    Furukawa, Y., Ponce, J.: Accurate, dense and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(8), 1362–1376 (2010)CrossRefGoogle Scholar
  30. 30.
    Jachiet, A.L., Labatut, P., Pons, J.P.: Robust piecewise-planar 3D reconstruction and completion from large-scale unstructured point data. In: Proceedings CVPR, San Francisco, USA (2010)Google Scholar
  31. 31.
    Pierrot-Deseilligny, M., De Luca, L., Remondino, F.: Automated Image-Based Procedures for Accurate Artifacts 3D Modeling and Orthoimage. In: XXIIIth International CIPA Symposium (2011)Google Scholar
  32. 32.
    Remondino, F., Lo Buglio, D., Nony, N., De Luca, L.: Detailed primitive-based 3d mode- ling of architectural elements. In: Proceedings of The XXII Congress of the International Society for Photogrammetry and Remote Sensing, Melbourne, Australia (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Livio De Luca
    • 1
  • David Lo Buglio
    • 1
    • 2
  1. 1.UMR 3495 CNRS / MCC MAP GamsauMarseilleFrance
  2. 2.Laboratoire AlICe - Faculté d’Architecture La Cambre HortaUniversité Libre de Bruxelles (ULB)BrusselBelgium

Personalised recommendations